

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862419. This publication reflects only the author's views and the European Union is not liable for any use that may be made of the information contained therein.

Project Partners:

- 1. LEITAT
- 2. IOM
- 3. CEA
- 4. TECNALIA
- 5. UKCEH
- 6. CNRS
- 7. RIVM
- 8. GAIKER
- 9. FIOH
- 10. ISTEC
- 11. THINKWORKS
- 12. ALLIOS
- 13. LATI
- 14. NOURYON
- 15. SYMLOG
- 16. DUKE UNIVERSITY

SAbyNA

H2020-NMBP-15-2020

Simple, robust and cost-effective approaches to guide industry in the development of safer nanomaterials and nano-enabled products

Start date of the project: 01/03/2020

Duration 48 months

WP	4	Name of the WP						
Dissemination level ¹ Public		Public		Due delivery date	M22, 31 December 2021			
Nature ²		Report		Actual delivery date	M22, 24 December 2021			

Lead beneficiary	ISTEC
Contributing beneficiaries	LEITAT, CEA, IOM

² Nature of the deliverable: \mathbf{R} = Report, \mathbf{P} = Prototype, \mathbf{D} = Demonstrator, \mathbf{O} = Other

¹ Dissemination level: **PU** = Public, **PP** = Restricted to other programme participants (including the JU), **RE** = Restricted to a group specified by the consortium (including the JU), **CO** = Confidential, only for members of the consortium (including the JU)

Version	Date	Author	Partner	Email	Comments ³
V1	19/11/21	Nathan Bossa,	LEITAT	nbossa@leitat.org	First draft
		David Burrueco		dburrueco@leitat.org	
		Felice Simeone	ISTEC	felice.simeone@istec.cnr.it	
	23/11/21	Simon Clavaguera	CEA	simon.clavaguera@cea.fr	Modification
V2	09/12/2021	Felice Simeone	ISTEC	felice.simeone@istec.cnr.it	Final version for
					evaluation
V3	22/12/2021	Felice Simeone	ISTEC	felice.simeone@istec.cnr.it	Final

 $^{^{\}rm 3}$ Creation, modification, final version for evaluation, revised version following evaluation, final

Deliverable abstract

This deliverable reports the work executed in Task 4.2. It evaluates the SbD methods collected in Deliverable 4.1 on the basis of their potential usability in industry. Although important from a conceptual point of view, in fact, the SbD methods described in D4.1 were not all suitable for industrial nano-manufacturing. To extract usable and accessible SbD methods from the whole list, Partners identified the factors that determine usability: clarity, accessibility, scalability, cost/benefits balance, retention of technical functions, number and types of limitations. These factors were evaluated for each SbD methods, and this evaluation provided the basis for their selection. Methods classified as "usable" covered a broad spectrum of practical cases. Partners identified at least on usable SbD method for minimizing risk arising form the physicochemical drivers described in D4.1; notably, the list reported in this deliverable contains also SbD methods that target risk originating from release of nanoparticle due to the properties of the supporting matrix. Selected methods covered most of the hazardous mechanisms that determine the toxicity of NF and NEP, and essentially all SbD approaches described in D4.1 were described in at least one selected resource. For the usable methods, these deliverable reports, list potential limitation, and report the link to resource. These usability cards provide a useful tool for finding and accessing SbD resources.

Table of Content

1.	Introduction	6
2.	Description of task 4.2	6
3.	Description of the work and main achievements	7
3	.1 Resources information. Newly identified resources and extension of physicochemical descriptors	7
3	.2 Harmonization of data entries	8
	3.2.1 ECHA Technical Function	8
	3.2.2 Harmonization of SbD approches	9
3	.3 Factors that determine the usability of a SbD method	11
3	.4 Analysis of usability of available SbD method	12
3	.5 Selection of resources	15
	3.5.1 Criteria of selection	15
	3.5.2 List of selected resources	15
	3.5.3 Overview of the selection	26
3	.6 Usability Cards	28
4.	Annex	29

List of Figure and Table

Table 1. List of new resources in addition to those in Deliverable 4.1 8
Table 2. Definition of Categories of SbD resources 9
Table 3. Overview of the usability information gathered for all resources 13
Table 4. Analysis of usability requirements of SbD resources in the repository
Table 5. List of selected resources from publications, with, in orange the resources developing SbD approach
for hazard, and, in blue, SbD approaches for minimizing release. For each resource, the NF chemistry, the
selection justification, the mechanism of concern, the key physico-chemical property for risk and the SbD
approach are listed16
Table 6. List of discarded (i.e., not usable) resources, with in orange the resources focusing on SbD for
minimizing hazard, and, in blue SbD, approaches for minimization of release
Table 7. Selection report for reports of other projects
Figure 1. Number of resources per Technical Function present in our list of SbD resources
Figure 2. Total number of resources identified (light blue) and number of resources judged usable (dark blue)
for each SbD method previously identified. Red columns indicate methods for which no usable resource was
selected
Figure 3. Total number of resources identified (light blue) and number of resources judged usable (dark blue).
Red columns indicate the physicochemical properties for which no usable resource was selected
Figure 4. Total number of resources (light blue) and usable (dark blue) resources grouped according to the
mechanism of concern

Abbreviations

NF	Nano-form
NEP	Nano-Enabled Product
DoW	Description of Work
ECHA	European Chemical Agency
OECD	Organisation for Economic Co-operation and Development
SbD	Safer by Design, or Safety by Design
WP	Work Package

1. Introduction

This deliverable analyzes the safety-by-design resources collected in the Deliverable 4.1 with the aim of extracting a list of approaches and methods that can be used in a real manufacturing of NFs and NEPs. One of the major hurdles that prevents several SbD approaches to be implemented in current nano-manufacturing is their low accessibility. In view of the establishment of the SAbyNA platform, this task selects methods with a proved potential to be used by industry and improves their accessibility. As such, this deliverable describes the multiple factors that determine the accessibility of these methods, and, on the basis of this analysis, establishes criteria for selecting usable SbD resources.

Task 4.2 was conducted in close collaboration with T5.2 in order to provide a comprehensive and global strategy towards the design of safer NFs, NEPs and associated nanoprocesses as early as possible in the industrial innovation process. Both D4.2 and D5.2 promote the use of usability cards, a schematic summary of each resource that should facilitate their implementation in the SAbyNA guidance platform.

In order to avoid ambiguities in the use of terminology, we recall that, within SAbyNA, the Safe by Design (SbD) concept refers to the minimization of risks arising from NFs and NEP while retaining their technical function. Previous work, described in D4.1, has provided a repository of available SbD methods. The aim of task T4.1 was to identify, map and sort the existing strategies used to reduce or mitigate risks associated with the use of NFs/ NEPs at all life cycle stages. Safe-by-Design strategies were identified among publications in scientific journals, projects' deliverables, and guidelines from international agencies. The selected resources were mapped and sorted according to a set of quality criteria, which enable the identification of information gaps that could be filled during the project. For this purpose, an Excel file was built and used to classify existing resources in several categories (e.g., reviews, publications, reports, and industrial know-how). The literature survey (T4.1) identified 75 documents (2010-2020) with approximately ³/₄ of these published in the last three years. Among these articles, reviews, concept articles and position papers (35 documents) were separated from research articles (54 SbD approaches). A total of 19 SbD approaches reported from projects (deliverables) were also analyzed.

An important outcome of Task 4.1 has been the identification of links between physicochemical sources of hazard and corresponding SbD approach. These links provided us the basis for grouping SbD methods according to the physicochemical hazard drivers so that, once a driver will be identified, a list of potential SbD methods can be explored quickly.

This deliverable builds on the work of the previous Task 4.1 and expands background knowledge about the SbD methods with information about usability and accessibility. As we discuss in the following sections, criteria of usability will be established that take into account several aspects. Usability cards, summaries of SbD methods for quick consultation, will be presented for methods classified as "usable".

2. Description of task 4.2

From DoW:

Improving usability and accessibility of existing resources for SbD strategies towards safer NF and NEP along their life cycle. [M6 to M22] LEITAT, ISTEC, CEA, IOM

The collection of strategies, frameworks, guidelines or other resources identified in T4.1 will be analysed and structured to improve their usability and facilitate their implementation in some particular cases. The work in this task should be aligned with the work in T5.2 to provide the user with integrated SbD solutions for NFs/NEPs and their processes at all stages of products life cycle. One of the main challenges that has not been overcome yet by the existing approaches on SbD strategies is their low accessibility for the potential users, and this is one of the main objectives of this task in SAbyNA. The first action in the process of improving resources usability will be to compile and place them in one platform (the outputs from D4.1); second will be to provide a clear guidance on their usability, including their limitations (basis for new/tailored SbD strategies proposals) and third will be to identify the possibilities for their implementation in real scenarios. This task will also work closely with WP6, contributing to SAbyNA guidance development by providing the workflows for the module on SbD solution towards safer NFs and NEPs products along their life cycle.

3. Description of the work and main achievements

3.1 Resources information. Newly identified resources and extension of physicochemical descriptors.

Table 1 lists resources about SbD identified during the last year added to the list already provided in D4.1. These resources cover an important section of the risk assessment of NFs and NEP, because they focus, mainly, on assessment of exposure, a risk factor that we deemed to be under-represented in the previous list. In view of these new resources, a thorough description of the physicochemical drivers of risk required an extension of physicochemical specifications of the "key physicochemical properties of interest for risk" and the "mechanism of concern" of our classification scheme. In line with the recommendation of the OECD report "physicodecisions chemical decision framework to inform for risk assessment of manufactured nanomaterials"(ENV/JM/MONO(2019)12), these new specification for mechanism of concern, in addition to hazard, was: "release", when the risk arises from a high probability of releasing a NF from the NEP. In the field "key physicochemical properties of interest for risk", the new specifications were: "Resilience of NEP matrix" to indicate a risk arising from reduced resistance of the matrix to external factors (e.g., aging): the higher the matrix resistance, the lower is the NF release; "Dispersion of NFs in the NEP matrix" to indicate the spatial distribution of the NFs within NEP matrix: a good dispersion means a uniform and homogeneous distribution of NFs within the matrix. Due to several factors, in fact, NFs can aggregate/agglomerate leading to inhomogeneous distribution within the matrix, weakening the interaction with the matrix, thus promoting its release. Another factor influencing the release is the "NFs content", that is, the amount of NM incorporated in the nano-enabled product. Intuitively, a reduction of the NF quantity can ensure the reduction of the NF release. Finally, "Location of NFs in the NEP (coating or embedded)" to indicate the location of the NM within the NEP as a factor determining the probability to get in contact with it. The functional NF could be at the surface, and, as such, able to interact with the external environment, or embedded (e.g., in a polymer composite) and then isolated from the external environment and unable to be releases.

	The I. List of new resources in	addition to those in Den							
Year	Title	Authors	Document Type	Source title	Volume	Issue	Art. No.	Page start-end	DOI
2014	Formulation effects on the release of silica dioxide nanoparticles from paint debris to water	Stefano Zuin, Andrea Massari, Arlen Ferrari, Luana Golanski	Article	Science of the Total Environment	476-477			298-307	doi.org/10.1 016/j.scitote nv.2014.01. 029
2021	Towards the development of safer by design TiO2- based photocatalytic paint: impacts and performances	A. Rosset, V. Bartolomei, J. Laisney, N. Shandilya, H. Voisin, J. Morin, I.Michaud-Soret, I.Capron, H.Worthman, G.Brochard, V.Bergé, M.Carriere, F.Dussert, O.Le Bihan, C. Dutouquet, A.Benayad, D.Truffier-Boutry,	Article	Environmental Science: Nano	8			758-772	10.1039/d0 en01232g
2021	TiO2 nanoparticles coated with bio-inspired ligands for the Safer-by-Design development of photocatalytic paints	Jérôme Laisney, Aurélie Rosset, Vincent Bartolomei, Daniela Predoi, Delphine Truffier- Boutry, Sébastien Artous, Virginie Bergé, Gregory Brochard and Isabelle Michaud-Soret	Article	Environmental Science: Nano	8	1		297-310	https://doi. org/10.1039 /D0EN0094 7D
2013	Monitoring migration and tranformation of nanomaterials in polymeric composites during accelerated aging	G Vilar, E Fernández-Rosas, V Puntes, V Jamier, L Aubouy, S Vázquez-Campos	Article	Journal of Physics	429		012044		doi:10.1088 /1742- 6596/429/1 /012044
2013	Exploring release and recovery of nanomaterial from commercial polymeric nanocomposites	Martí Busquets-Fité, Elisabet Fernandez, Gemma Janer, Gemma Vilar, Socorro Vázquez- Campos, R Zanasca, C Citterio, L Mercante, Víctor Puntes	Article	Journal of Physics	430		12048		doi:10.1088 /1742- 6596/429/1 /012048
2018	Excellent binding effect of L-methionine for immobilizing silver nanoparticles onot cotton fabrics to improve the antibacterial durability against washing	Jing Zhou, Dongrong Cai, Qingbo Xu, Yanyan Zhang, Feiya Fu, Hongyan Diao, Xiangdong Liu	Article	Royal Society of Chemistry Advances	8			24458- 24463	DOI: 10.1039/c8r a04401e
2011	Fate of nanoparticles during life cycle of polymer nanocomposites	T Nguyen, B Pellegrin, C Bernard, X Gu, J M Gorham, P Stutzman, D Stanley, A Shapiro, E Byrd, R Hettenhouser and J Chin	Article	Journal of Physics	304		12060		doi:10.1088 /1742- 6596/304/1 /012060
2012	Improved dispersion of carbon nanotubes in polymer at high concentrations	Chao-Xuan Liu and Jin-Woo Choi	Article	Nanomaterials	2			329-347	doi:10.3390 /nano20403 29
2016	Quantitative rates of release from weathered nanocomposites are determined across 5 orders of magnitude by the matrix, modulated by the embedded nanomaterial	Wendel Wohlleben, Nicole Neubauer	Article	Nanoimpact	1			39-45	http://dx.d oi.org/10.10 16/j.impact. 2016.01.001
2019	Safer-by-design flame-sprayed silicon dioxide nanoparticles: the role of silanol content on ROS generation, surface activity and cytotoxicity	Laura Rubio, Georgios Pyrgiotakis, Juan Beltran- Huarac, Yipei Zhang, Joshi Gaurav, Glen Deloid, Anastasia Spyrogianni, Kristopher A. Sarosiek, Dhimiter Bello and Philip Demokritou	Article	Particle and Fibre Toxicology	16		40		doi.org/10.1 186/s12989- 019-0325-1

3.2 Harmonization of data entries

3.2.1 ECHA Technical Function

In the SbD approach, preserving the NFs' function is essential, and the need to use a harmonized technical function terminology is required. We, then, used the descriptor list for the technical function provided by the ECHA Guidance on Information Requirements and Chemical Safety Assessment, Chapter R.12: Use descriptors (December 2015). For each SbD resource analyzed, we identified the technical function of the NF specific for its intended use. Unfortunately, not all resources (N=10) reported information about the technical function; in some cases, we could retrieve the technical function from previous papers, or infer it on the basis of the information provided by the resource. Figure 1 displays the number of resources counted for each technical function described in the resources of our repository.

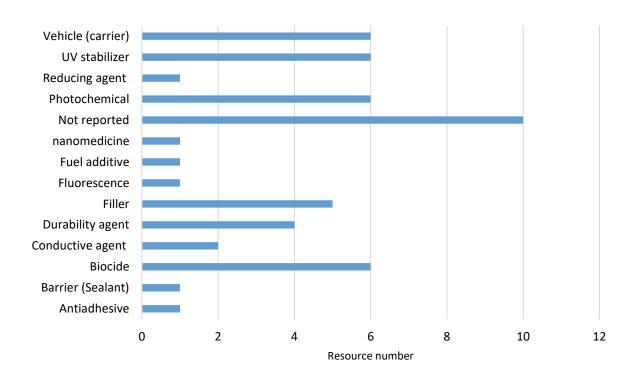


Figure 1. Number of resources per Technical Function present in our list of SbD resources

3.2.2 Harmonization of SbD approches

The SbD strategies described in the resources were initially described by free texts in the 4.1 table. For this deliverable, that information was rationalized into a grouping scheme comprising 13 classes (or, categories) of SbD methods. These classes where, in order of number of resources describing them, coating, doping, matrix composition, support, NFs content, process, aspect ratio, surface chemistry, size, encapsulation; NFs/matrix affinity and substitution.

Table 2 summarizes these different SbD strategy categories. As described in D4.1, similarly to the SbD approaches, the mechanism of concern and the key physico-chemical properties were collected. We observed that the same SbD strategy may target different mechanism of concern and the physico-chemical driver. For example, coating SbD strategy is used to minimize, or even suppress, the following hazardous mechanisms: "affinity to aquatic and terrestrial organisms", "soluble compound release", "Surface reactivity", "Interference with intracellular redox processes" and "NFs release". A cumbersome example of the use of SbD strategies that results in new risks is the minimization of the release of NF with high aspect ratio: while increasing the NFs aspect ratio reduces the release of the NF from the NEP, essentially because it limits the detachment from the NEP matrix, at the same time, it leads to higher hazards for the NF. In these cases, a balance between old and new risk has to be carefully considered.

SbD strategy category	Description	Example	Number of SbD resources	References
Surface chemistry	Modification of the NF surface composition	Study of different common solvents to enhance the dispersability of MWCNT in	3	10.1039/c9nr01162e 10.1088/17426596/429/1/012048 10.3390/nano2040329

Table 2. Definition of Categories of SbD resources

		PDMS matrix. Functionalization of CNTs by carboxyl groups.		
Support	NP attached to framework of different material The NFs is attached onto a bigger particle.	In the context of cosmetic application, TiO_2 NFs is grafted onto crystal of nanocellulose. The UV filtration is improved, and the nanocomposite shows a new functionality that allow to reduce the surfactant content (ref).	5	10.1007/s41742-020-00252-7 10.1021/acssuschemeng.8b02004 10.1016/j.ceramint.2017.11.028 10.1039/c7ra02506h 10.1039/d0en01232g
Substitution	Substitution of the materials by a safer material with the same technical function	Quantum dot replaced by a Dye doped silica NP.	1	10.1016/j.impact.2020.100267
Size	Modification of NF size	AgNP size variation (30nm to 75nm) by coating.	2	10.1016/j.impact.2020.100267 10.3390/ijerph120808828
Process	Modification of any processes occurring along the NFs life cycle	Integration in the process design of the best available practices to prevent, assess, control, and manage CNT emissions and workers exposures.	4	10.1016/j.impact.2020.100267 10.1088/1742-6596/838/1/012018 10.1088/1742-6596/429/1/012050
NFs/matrix affinity	Enhancement of the NF stability in the product matrix.	Modulation of the NF photo- catalytic properties and improvement of the adhesion to the paint matrix with the addition of bio-inspired ligands.	1	10.1021/acs.est.7b02390
NFs content	Reduction of the NF concentration	Modification of the polymer matrix content to limit NP emissions in drilling operations	4	10.1007/s11095-019-2747-8 10.1016/j.impact.2018.06.003 10.1080/02786826.2017.1330535 10.1039/c8ra03403f
Matrix composition	Change in matrix composition.	Paint matrix modification (styrene-acrylic copolymer instead of acrylic copolymer). Pigments addition (TiO ₂) to enhance the matrix stability when it is exposed to UV light.	7	10.1007/s11051-015-2962-0 10.1016/j.scitotenv.2014.01.029 10.1088/1742-6596/304/1/012060 10.3390/nano2040329 10.1016/j.impact.2016.01.001 D3.4: REPORT on the evaluation (and prediction) of the impact of safer-by-design strategies on the release of NM throughout the life cycle of a NM-enabled products
Encapsulation	NFs is encapsulated in safer materials.	Lowering of side effects of anaesthetic molecule by embedding NP in binary lipid mixtures of citrem and SPC	1	10.1039/c9cp01878f
Doping	Chemical composition of the NF is modified. A substance is added in low amount to tune the NFs properties	Tuning the cytotoxicity of zinc oxide nanoparticle through iron doping.	5	10.1021/acsami.7b06657 10.1016/j.taap.2016.01.002 10.1021/nn1028482 10.1021/nn901503q
Coating	A material is added to cover the NFs surface	Hermetic encapsulation of ZnO nanorods in a biologically inert, nano-thin amorphous SiO ₂ coating during their gas-phase synthesis.	18	10.1016/j.colsurfa.2020.124792 10.1002/pssa.201900619 10.1016/j.impact.2020.100267 ISBN: 978-80-87294-89-5 10.1039/C8RA07374K 10.1016/j.jconrel.2016.08.011 10.2147/IJN.S97476 10.1016/j.taap.2015.07.012 10.3390/ijerph120808828

				10.1039/c3en00062a 10.1016/j.biomaterials.2013.12.057
				10.3109/17435390.2012.739665
				10.1021/nn305719y 10.1088/1742-6596/429/1/012044
				D 7.1 - Report on the development of
				SbyD strategies applied to CuO
				SAFETY BY DESIGN:
				PRODUCTION OF ENGINEERING
				SURFACE MODIFIED
				NANOMATERIALS
		Assembly of AgNP bridged		
	A ligand is added to	together by a bio-inspired		10.1039/c9nh00286c
Bridge	connect the NFs to	molecule covalently bonded to	3	10.1039/D0EN00947D
	each other	the nanoparticle surface through		10.1039/c8ra04401e
		its three thiol functions.		
	The NF length and	The toxicity is reduced by		10.1007/s11051-020-04791-0
Aspect ratio	diameter are	reducing the length of Ag	3	10.1016/j.impact.2020.100267
	modified.	nanowires.		10.1039/c8en00890f

3.3 Factors that determine the usability of a SbD method

For a SbD method to be implemented in an industrial scenario, several requirements have to be fulfilled: in the following, the factors, identified by SAbyNA, that will be used to select usable methods from the general repository.

- **Goal/aim**. The recognition of SbD resources conducted in D4.1 revealed a diffuse misuse of the concept of SbD. Some of the resources, for example, described generic chemical transformation of NFs without any focus on design, or, worst, without reporting the specific problem they were trying to solve. In the present Deliverable, we considered "usable" only those resources that described clearly the problem they solved, starting from the identification of the physical-chemical drivers of hazard of the NFs, their modification, and prove of reduced hazard.
- **Clarity**. In the attempt to capture the point of view a potential user of the SAbyNA SbD platform, we assessed the clarity of each resource identified in D4.1. To be usable, SbD resources had to provide a logical description of the method, avoid technical jargon and abuse of acronyms, provide references to additional resources eventually cited.
- Accessibility. To be used, a resource should be accessed easily. The criteria of accessibility we have established include 1) the availability of a working web link to the resource, 2) the open-access option, or, alternatively, a clear indication of the price of the resource; in any case, we have given priority to resources publicly available for free.
- **Technical function**. A usable and useful SbD method must reduce risks and preserve functionality of a NF as much as possible. The resources selected on the basis of their usability provide evidence of both these requirements of a working SbD method.
- **Applicability**. Scale and scalability of process. The implementation of SbD procedure at an industrial scale must be compatible with the production of big volumes. Most of the SbD methods described in the available sources, however, are developed at a laboratory scale. We selected SbD methods that can be up-scaled to industrial processes.
- **Cost/benefit balance**. Although the assessment of costs will be part of the final platform of SAbyNA, we attempted an evaluation of possible costs of the selected resources, aware that the evaluation of the balance between costs and benefits is left to individual final users. In any case, we considered the use of expensive materials (e.g., precious metals) or specialized equipment and infrastructures as a limitation to the usability of the method.
- **Regulatory aspects.** Depending on the field of application, NF/NEP night be subject to specific regulation that rules its application in addition to eventual assessment of safety. Information about legal requirement were taken into account when reagents or process of a specific SbD method were subjected

to regulation. For example, the use of dangerous reagents leads to some limitations to the implementation of SbD methods also if the final NF or NEP is absolutely safe.

• **General conclusion.** This field was used to collect general information useful to decide about usability, but not classifiable in one of the previous criteria.

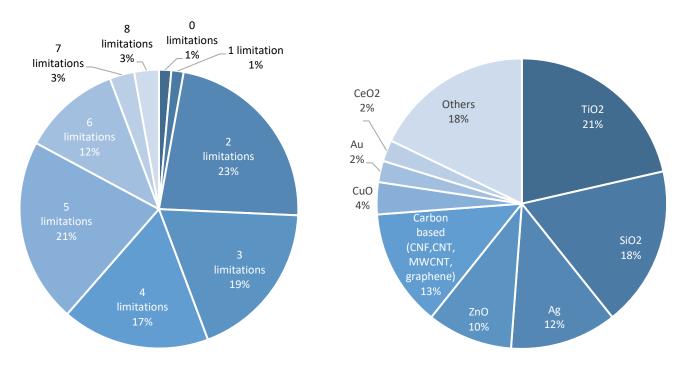
3.4 Analysis of usability of available SbD method

For each SbD method in our repository, we assessed all the requirements/factors of usability by mean of the Excel grid reported in Table 3. Using the grid allowed us to summarize information about usability in a succinct, yet effective way, which enabled the selection of methods.

	14010 01 010	i view of the	ususinity mitorm	ation gathered it	Ji an i cou
Resource title (example of usability assessment)	GOAL / AIM	CLARITY	ACCESSIBILITY	TECHNICAL FUNCTIONS	
	Is the goal/main aim of the SbD strategy clear?	Is the SbD strategy easy to understand?	Is the SbD strategy easy to access (is it publicly available) And sufficiently high on a search criteria (e.g., "google etc")?	Are the NF technical functions maintained after applying the SbD strategy?	
	Y/N	Y/N	Y/N	Y/N	
	LIMITATION(S)				
	Note: if no , we consider it a limitation	Note: if no , we consider it a limitation	Note: if no , we consider it a limitation	Note: if no , we consider it a limitation	
Hierarchical nano ZnO-micro TiO2 composites: High UV protection yield lowering photodegradation in sunscreens	Yes, the author aimed to produce a hierarchical composite of ZnO NPs ancored onto TiO2 microparticles that presents higher UV adsorpition and higher SPF value, and a recuced photocatalitic adverse effect	Yes	No - Part of scientific paper not openly available without purchase.	Yes, the NMs was used as UV filter in sunscreens	
MECHANISM(S) OF CONCERNS		APPLICABILITY		SCALE & SCALABILITY OF PROCESS	
Are the mechanism(s) of concern of the NF/NEP reduced after applying the SbD strategy?	Is the SbD "bringing" to new mechanism(s) of concern?	Is the SbD strategy applicable to other NF/NEP?	If Y - Specify to which other NF(s) the SbD strategy can be applied	At which "scale" is the SbD strategy applied/implemented?	Is it possible to scale-up the SbD strategy?
Y/N	Y/N	Y/N. If Y, please specify in column H.		Real production scale/ Pilot scale/ Lab scale	Y/N
Note: if no , we consider it a limitation?	Note: if Yes , we consider it a limitation	Note: if no , we consider it a limitation		Note: if at lab scale , we consider it as a limitation	Note: if no info , we consider it a limitation
Yes, the production of ROS and	No	Y (potentially, not	Potentially to any other NPs that	Lab scale	Yes, potentially
the production of free radicals	NU	reported in the study)	present photocatalytic activity	Lauscale	res, potentially
		REGULATORY			
COST / BENEFIT & COST		ASPECTS	CONCLUSION	LIMITATION	Comment
Are there any information on cost/benefit of the implemented SbD?	If Y - Are the cost a potential limitation for real case application?	Does the SbD comply with current Regulatory Requirements?	Is the SbD applicable to a real case?	Which are the main limitations ?	How to improve usability?
Y/N	Y/N	Y/N	Free text. Brief conclusion stating if the SbD is suitable to be applicable in a real case. If not, please try to explain which are the main limitations and if it would be possible to give any suggestion/recommendation to make it applicable (in next column O).	Free text, pointing out which were the limitation. NOTE	Free text, pointing out which aspects can be improved and how.
Note: if no info , we consider it a limitation	Note: if Yes, we consider it a limitation	We will decide if we will keep or not this entry field because we may not have enough info to understand the applicable regulation			·
Yes, the study investigate the benefit due to the ZnO amount reduction in sunscreen production	No	Yes, the author is aware of the regulatory aspects	Yes, the results show a reduction in free radicals production, an higher SPF values and a more photostable UV filter with a reduced relese of ZnO NPs	Strategy appliable only to photocatalytic NFs	Add information on NPs release in relavant media, as sea water and synthetic swaet, that can mimic the real exposure conditions
	l	l			L

Table 3.	Overview	of the usab	oility inform	ation gathere	d for all	resources
Table 5.		or the usar	mity morma	ation gathers	u iu an	i coui ces

Importantly, rationalizing information in the grid enabled us to execute a statistical analysis of the outcomes, which had the advantage of avoiding subjective judgement. Table 4 reports the results of the usability analysis, from which it emerged that a very high fraction of the resources (79%) can be potentially used in industrial nano-manufacturing. Another important information that emerged from our analysis is that the most



common, and most used, NFs are represented, suggesting that a wide range of manufacturers may be potentially interested in some of the resources we have collected.

Clarity	93% have a clear goal				
Accessibility	37 % of the literature is open access				
Tasknisslfunstion	81% of resources report a technical function				
Technical function	68% maintain the technical function				
	90% of resources report technical function				
Mechanism of concern	75% reduce the mechanism of concern				
	13% bring new mechanism of concern				
Applicability	86% are applicable to other NF/NEP				
Scale and Scalability of the process	97% of resources describe a potential scalability $ \begin{array}{c} 3\% \\ - & 4\% \\ 9\% \\ 9\% \\ 9\% \\ 9\% \\ 9\% \\ - & theorical \\ - & lab scale \\ - & pilot \\ - & prototype \\ - & market \end{array} $				
Cost/Benefit Cost	29% report cost/benefit				
	No information about the cost limitation				
Regulatory aspects	Yes, but not expert judgement				
76% can be potentia	ally implemented in real manufacturing				

Table 4. Analysis of usability requirements of SbD resources in the repository

3.5 Selection of resources

3.5.1 Criteria of selection

The analysis of usability aims at compiling a list of SbD methods that industry can adopt to produce safe (or, as-safe-as-possible) NFs and NEPs. For the specific objectives of SAbyNA, it is especially important to identify SbD methods for the production of nano-enabled paints and of nano-enabled filaments for 3D printing. Overall, we have established the following criteria for selecting usable methods:

- 1- Usability: the total number of limitations, computed for all factor of usability, was used as major decision factor. Limitations listed in the Excel grid for clarity, aim, and applicability to real cases were considered with high weight. Contrarily, limitations due to cost (i.e. cost not reported) or accessibility (i.e., open access or not) were considered less important. The usability was the main criterion used for the selection.
- 2- Sector specific resources: the fact that the resource was directly linked with the paint or 3D printing, or linked in some way with the SAbyNA case study (e.g., SbD of NF composed of Ag, SiO₂, CNT and TiO₂) was considered a plus for the resource selection.
- 3- **Repetitions and redundancies discarded.** Our analysis revealed that many resources reported the same SbD method, but used for different NFs. In these cases, we retained only the most comprehensive resource which provided the link between a physico-chemical drivers of risk and the strategies to minimize it.
- 4- Resources focused on processes discarded. WP5 will identify the most effective processes to implement a specific SbD strategy.
- 5- Resources focused on the performance of nanomedicines rather than on their safety where discarded because not relevant for the final SAbyNA platform.

For the sake of completeness, we report in this deliverable both selected (Table 5) and discarded (Table 6) resources, although grouped in different lists. Due to their different nature, selection on the usability of reports and deliverables from other projects about SbD are listed in table 7. Only for the selected one, we compiled usability cards, which report a synthetic description of the SbD, area of application, link to the original resource.

3.5.2 List of selected resources

Table 5. List of selected resources from publications, with, in orange the resources developing SbD approach for hazard, and, in blue, SbD approaches for minimizing release. For each resource, the NF chemistry, the selection justification, the mechanism of concern, the key physico-chemical property for risk and the SbD approach are listed.

Risk= release or Hazard or both	NFs Chemistry	Selection	Justification	Mechanism of concern	Key physicochemical properties identified for risk characterization	Harmonizations Implemented SbD modifications	Resource title
Hazard	TiO2	YES	Good usability, paly with the NFs dispersion in Matrix	Affinity to aquatic and terrestrial organisms	Surface chemistry	Coating	Optimizing the dispersion of nanoparticulate TiO2-based UV filters in a non- polar medium used in sunscreen formulations – The roles of surfactants and particle coatings
Release	TiO2	YES	Good usability, using NFs on support decrease the NFs dustiness and have been show (elsewhere) to preserve the NFs function	Reactive oxygen species generation	Dustiness potential	Support	Exposure Assessment During the Industrial Formulation and Application of Photocatalytic Mortars Based on Safer n-TiO2 Additives
Hazard	TiO2 and ZnO	YES	Good usability, improve functionality and reduce risk	Surface reactivity	Surface reactivity	NFs content	Nano- engineering safer-by-design nanoparticle based moth-eye mimetic bactericidal and cytocompatible polymer surfaces
Hazard	TiO2 and ZnO	YES	The use of support as SbD reduce the NFs toxicity	Surface reactivity	Surface reactivity	Support	Hierarchical nano ZnO-micro TiO2 composites: High UV protection yield lowering photodegradation in sunscreens
Hazard	TiO2	YES	Good usability and effective SbD strategy to reduce risk. The method have been proved to be effiscient in actual product	Surface chemistry	Surface chemistry	Coating	Silica modification of titania nanoparticles enhances photocatalytic production of reactive oxygen species without increasing toxicity potential in vitro

Hazard	TiO2	YES	Bad usability, but paint sector specific	Photocatalytic activity	Surface reactivity		Characterization of photocatalytic paints: A relationship between the photocatalytic properties- release of nanoparticles and volatile organic compounds
Hazard	TiO2	YES	Good usability of SbD support that can be apply to the targeted industrial sectors	Reactive oxygen species generation	Surface reactivity	Support	Safer-by-design hybrid nanostructures: an alternative to conventional titanium dioxide UV filters in skin care products
Release	TiO2	YES	Good usability, provide SbD strategy to the paint sector	Release	NFs content	Support	Towards the development of safer by design TiO2-based photocatalytic paint: impacts and performances
Release	TiO2	YES	Good usability, provide SbD strategy to the paint sector	Release	NFs content	Bridge	TiO2 nanoparticles coated with bio- inspired ligands for the Safer-by- Design development of photocatalytic paints
Hazard	Ag	YES	Good usability , SbD bridging to reduce NFs dissolution	Soluble compound release	Dissolution rate	Bridge	Safer-by-design biocides made of tri-thiol bridged silver nanoparticle assemblies
	Ag	YES	Good usability , play with NFs Size to reduce the dissolution	Soluble compound release	Length, diameter - size	size	Safe by Design implementation in the nanotechnology industry
Hazard	Ag	YES	Good usability	Fiber-like toxicity	Aspect ratio - shape	Aspect ratio	A toxicology- informed, safer by design approach for the fabrication of transparent electrodes based on silver nanowires
Release	Ag	YES	Good usability, provide SbD strategy limiting the NFs release	Release	Aspect ratio - shape	Bridge	Safe by Design implementation in the nanotechnology industry

Hazard	SiO2	YES	Good usability and the substitution SbD strategy is well applied		Chemical composition	Substitution	Safe by Design implementation in the nanotechnology industry
Release	SiO2	YES	Good usability , SbD coating to reduce worker exposure	Surface reactivity	Dustiness potential	Coating	Safe by Design implementation in the nanotechnology industry
Hazard	SiO2	YES	Good usability, SbD coating to reduce NFs dissolution, Paint sector releated	Surface reactivity	Surface chemistry	Coating	Cytotoxicity of nanomaterials applicable in restoration and conservation
Hazard	SiO2	YES	Good usability and relevant for paint industrial sector	Affinity to aquatic and terrestrial organisms		Matrix composition	Influence of paints formulations on nanoparticles release during their life cycle
Release	SiO2 NP and MWCNTs	YES	Good usability, provide SbD strategy to the plastic sector	Release	Aspect ratio - shape	Coating	Monitoring migration and tranformation of nanomaterials in polymeric composites during accelerated aging
Release	SiO2 NP and MWCNTs	YES	Good usability, provide SbD strategy to the plastic sector	Release	Aspect ratio - shape	Matrix composition	Fate of nanoparticles during life cycle of polymer nanocomposites
Hazard	SiO2 NPs	YES	Good usability, provide insigh on SAbyNA case study	Surface reactivity	Surface chemistry	Doping	Safer-by-design flame-sprayed silicon dioxide nanoparticles: the role of silanol content on ROS generation, surface activity and cytotoxicity
Release	Amorphous SiO2	YES	Good usability, provide SbD strategy to the paint sector	Release	Resilience of the NEP matrix	Matrix composition	Formulation effects on the release of silica dioxide nanoparticles from paint debris to water
Release	MWCNTs	YES	Good usability, provide NFs	Release	Dispersion of NFs in the NEP matrix	Matrix composition and surface chemistry	Improved dispersion of carbon nanotubes in polymer at high concentrations

Release	CuO & ZnO	YES	Reduction of release	Release	Aspect ratio - shape, Surface chemistry	NFs/matrix affinity	Airborne Nanoparticle Release and Toxicological Risk from Metal- Oxide-Coated Textiles: Toward a Multiscale Safe-by-Design Approach
Hazard	ZnO	YES	Good usability and relevant for paint industrial sector	Surface reactivity	Surface reactivity	Coating	Influence of paints formulations on nanoparticles release during their life cycle
Hazard	ZnO	YES	Yes, a SbD doping, therory and experimental testing	Reactive oxygen species generation	Dissolution rate	Doping	Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos
Hazard	Au	YES	Good usabiility and test a framework			Coating	Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: From synthesis to proof-of-concept in vitro studies
Release	Multiple	YES	Good usability, provide SbD strategy to the plastic sector	Release	NFs/NEP matrix affinity	Coating	Exploring release and recovery of nanomaterial from commercial polymeric nanocomposites
Release	Multiple	YES	Good usability, provide insight on matrix degradability	Release	NFs/NEP matrix affinity	Matrix composition	Quantitative rates of release from weathered nanocomposites are determined across 5 orders of magnitude by the matrix, modulated by the embedded nanomaterial

minimizing hazard, and, in blue SbD, approaches for minimization of release.							
Risk= release or Hazar d or both	NFs Chemistry	Selectio n	Justification	Mechanism of concern	Key physicochemica l properties identified for risk characterizatio n	Harmonization s Implemented SbD modifications	Resource title
Hazard	TiO2	NO	Average usability, aspect ratio for photocatlytics toxicity not a relevant SbD strategy	Reactive oxygen species generation	Aspect ratio - shape	Aspect ratio	The shape of titanium dioxide nanomaterials modulates their protection efficacy against ultraviolet light in human skin cells
Hazard	TiO2	NO	Bad usability,	Photocatalyti c activity	Surface reactivity	Surface chemistry	A chemoinformatics approach for the characterization of hybrid nanomaterials: Safer and efficient design perspective
Hazard	TiO2 and ZnO	NOT for now	Review need to be detaiiled	Affinity to aquatic and terrestrial organisms		NFs content	Assessing Sunscreen Lifecycle to Minimize Environmental Risk Posed by Nanoparticulate UV-Filters – A Review for Safer- by-Design Products
Hazard	Ag	NO	Bad usability, coating SbD is presented in other resources	Soluble compound release	Chemical composition	Coating	The 3D Design of Multifunctional Silver Nanoparticle Assemblies Embedded in Dielectrics
Hazard	Ag	NO	NO, process related	Affinity to aquatic and terrestrial organisms	Chemical composition	process	Safe by Design implementation in the nanotechnology industry

Table 6. List of discarded (i.e., not usable) resources, with in orange the resources focusing on SbD for minimizing hazard, and, in blue SbD, approaches for minimization of release.

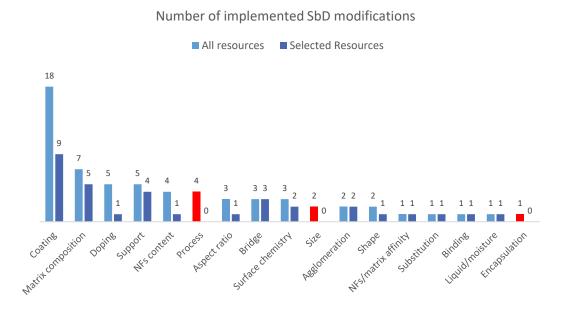
Hazard	SiO2	NO	Bad usability,	Trojan horse phenomena	Length, diameter - size	NFs content	Formation of Protein Corona on Nanoparticle Affects Different Complement Activation Pathways Mediated by C1q
Release	SiO2 & Al2O3	NO	Bad usability,	Release		Content	The effect of nanosilica (SiO2) and nanoalumina (Al2O3) reinforced polyester nanocomposites on aerosol nanoparticle emissions into the environment during automated drilling
Release	CNTs	NO	Process related	Fiber-like toxicity		process	Towards large scale aligned carbon nanotube composites: An industrial safe-by- design and sustainable approach
Hazard	CNTs & GO	NO	Bad usability,	Fiber-like toxicity	Chemical composition	Doping	Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications
Release	CNTs	NO	Process related	Fiber-like toxicity	Dustiness potential	process	Implementation of a safe-by-design approach in the development of new open pilot lines for the manufacture of carbon nanotube- based nano-enabled products

Hazard	ZnO	No	SbD coating with same materials already describe	Reactive oxygen species generation	Dissolution rate	doping	Towards large scale aligned carbon nanotube composites: An industrial safe-by- design and sustainable approach
Hazard	ZnO	NO	Bad usability,	Fiber-like toxicity	Aspect ratio - shape	size and coating	Do nanoparticle physico-chemical properties and developmental exposure window influence nano ZnO embryotoxicity in Xenopus laevis?
Hazard	Graphene	NO	NO, process related		Length, diameter - size	process	Safe by Design implementation in the nanotechnology industry
Hazard	CNF	NO	NO, process related	Fiber-like toxicity	Length, diameter - size	aspect ratio	Safe by Design implementation in the nanotechnology industry
Hazard	local anesthetic agent bupivacaine (BUP)	NO	Relevant for nanomedecine	Soluble compound release	Dissolution rate	Encapsulation	Citrem- phosphatidylcholin e nano-self- assemblies: Solubilization of bupivacaine and its role in triggering a colloidal transition from vesicles to cubosomes and hexosomes
Hazard	Graphene Oxyde Iron nanohybrid	NO	SbD do not reduce the risk	Reducing agent	Surface reactivity	support	In Vitro Pulmonary Toxicity of Reduced Graphene Oxide-Nano Zero Valent Iron Nanohybrids and Comparison with Parent Nanomaterial Attributes
Hazard	Nanoclays	NO	Bad usability,	Surface chemistry	Surface chemistry	doping	Early Assessment and Correlations of Nanoclay's Toxicity to Their Physical and Chemical Properties

22

	binary mixture of citrem and soy phosphatidylcholin e	NO	Focus on nanomedecine			coating	A structurally diverse library of safe-by-design citrem- phospholipid lamellar and non- lamellar liquid crystalline nano- assemblies
	Au	No	Nanomedecin e			Coating	A safe-by-design approach to the development of gold nanoboxes as carriers for internalization into cancer cells
Hazard	Iron oxide	NO	Bad usability,	Soluble compound release	Dissolution rate	Coating	Biodegradation of iron oxide nanocubes: High- resolution in situ monitoring
Hazard	CuO	NO	SbD already describe	Soluble compound release	Dissolution rate	doping	Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu- O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos
Hazard	CeO2	No	SbD coating with same materials already describe	Surface reactivity	Surface chemistry	coating	Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses
Hazard	CeO2	No	SbD coating with same materials already describe	Surface reactivity	Surface chemistry	Coating	An in vivo and in vitro toxicological characterization of realistic nanoscale CeO2 inhalation exposures

|--|


Chemistry	Selection	Justification	Mechanism of concern	Key physicochemical properties identified for risk characterization	Harmonizations Implemented SbD modifications	Resource title
CuO	No	Other toxicity studies are needed	Surface reactivity	zeta potential	Coating	D 7.1 – Report on the development of SbyD strategies applied to CuO
SiO2	Yes	Average Usability, relevant sector of activity and NFs used.	NFs release	Dustiness potential	Agglomeration	D8.8 - Report on the implementation and effectiveness of safe- by-design approaches
SiO2	Yes	Average Usability, relevant sector of activity and NFs used.	NFs release	Dustiness potential	Agglomeration	D8.8 - Report on the implementation and effectiveness of safe- by-design approaches
TiO2	No	Good usability, but extremly specific SbD	NFs release	Matrix resilience	Matrix composition	D3.4: REPORT on the evaluation (and prediction) of the impact of safer-by- design strategies on the release of NM throughout the life cycle of a NM- enabled products
TiO2	No	Usability can be improve, SbD effisciency inexistant, howver very relevant SbD for targetted industrial sectors	NFs release	Matrix resilience	Matrix composition	D3.4: REPORT on the evaluation (and prediction) of the impact of safer-by- design strategies on the release of NM throughout the life cycle of a NM- enabled products
Ag	Yes	Good usability and relevant SbD strategy	NFs release	NFs/matrix affinity	Binding	D3.4: REPORT on the evaluation (and prediction) of the impact of safer-by- design strategies on the release of NM throughout the life cycle of a NM- enabled products
Ag	Yes	Good usability and relevant SbD strategy	NFs release	NFs/matrix affinity	Shape	D3.4: REPORT on the evaluation (and prediction) of the impact of safer-by- design strategies on the release of NM throughout the life cycle of a NM- enabled products
Ag	Maybe	Good usability and relevant SbD strategy but similar to previous one	NFs release	NFs/matrix affinity	Shape	D3.4: REPORT on the evaluation (and prediction) of the impact of safer-by- design strategies on the release of NM throughout the life cycle of a NM- enabled products
	No	Process related		Chemical stability		SAFETY BY DESIGN: PRODUCTION OF ENGINEERING SURFACE MODIFIED NANOMATERIALS
	No	Process related		Dustiness potential		SAFETY BY DESIGN: PRODUCTION OF ENGINEERING

24

	No	Process related		Length, diameter - size		SURFACE MODIFIED NANOMATERIALS SAFETY BY DESIGN: PRODUCTION OF ENGINEERING SURFACE MODIFIED NANOMATERIALS SAFETY BY
	Yes		NFs release	Dustiness potential	Coating	DESIGN: PRODUCTION OF ENGINEERING SURFACE MODIFIED NANOMATERIALS
	No	Process related				SAFETY BY DESIGN: PRODUCTION OF ENGINEERING SURFACE MODIFIED NANOMATERIALS
	No	Applicability is limited				SAFETY BY DESIGN: PRODUCTION OF ENGINEERING SURFACE MODIFIED NANOMATERIALS
TiO2	Yes	Good applicability, and relevant to industral sector	Reactive oxygen species generation	Surface chemistry	Coating	SAFETY BY DESIGN: PRODUCTION OF ENGINEERING SURFACE MODIFIED NANOMATERIALS
	No	Process related				SAFETY BY DESIGN: PRODUCTION OF ENGINEERING SURFACE MODIFIED NANOMATERIALS
Graphene	Yes	Usability ok, SbD strategy relevant for the industrial sector	NFs release	Dustiness potential	liquid/moisture	D2.3 Final comparative risk assessment and life Cycle assessment for candidate materials after SbD implementation in "hot spots" along the life cycle
	No	Good usability, but already describe in the article resources	Chemical composition	Substitution	Safe by Design implementation in the nanotechnology industry	D2.3 Final comparative risk assessment and life Cycle assessment for candidate materials after SbD implementation in "hot spots" along the life cycle

3.5.3 Overview of the selection

Figure 2 summarizes the outcome of the selection of usable resources. For each SbD strategy, we reported the total number of resources and, next to it, the number of the selected/usable one (dark blue columns). Importantly, we could select at least one resource describing for each of the SbD methods identified, with the only exception of those focusing on encapsulation and size variation because they did not fulfil the requirements for selection; in addition, we removed those focusing on processes, because not relevant to WP4 objectives (red columns). The analysis revealed that the most developed SbD methods are those targeting coating and matrix composition. These SbD methods, in fact, are very flexible to be adapted to a variety of different NFs.

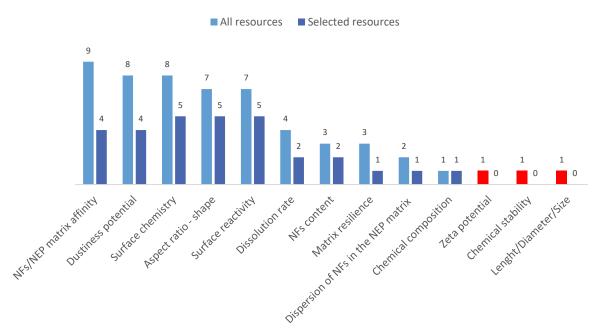
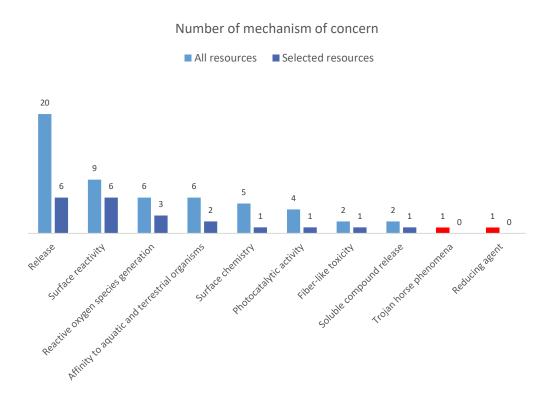


Figure 2. Total number of resources identified (light blue) and number of resources judged usable (dark blue) for each SbD method previously identified. Red columns indicate methods for which no usable resource was selected.

Figure 3 displays the comparison of the histograms for the total number (light blue) and of the usable resources grouped per key physical chemical property of concern. We observe that only for "zeta potential", "chemical stability" and the "length/diameter/size" we could not select any usable resource. We notice, however, that, when length/diameter/size are the source of risks, a practicable solution is to change the dimensions of the NFs, for example, by tuning the synthesis protocol, or by modifying the aspect ratio, for which as many as 5 usable resources were selected. For "Trojan horse phenomena" and the "reducing agent", two examples of physicochemical sources of hazard listed in the OECD guideline, we could not identify any resource.

In any case, he most represented physicochemical property of concern for risk were "NFs/NEP matrix affinity" and "dustiness potential" described in 9, and 8, resources respectively.



Key physicochemical properties identified for risk characterization

Figure 3. Total number of resources identified (light blue) and number of resources judged usable (dark blue). Red columns indicate the physicochemical properties for which no usable resource was selected.

When looking to the panel of mechanisms of concern (Figure 4), "release" was by far the most represented one. SbD methods aimed at reducing release represented about 35 % of the total number of all resources selected. This high number of resources may arise from the very general character of this mechanism that can be initiated by a variety of phenomena. By contrast, other mechanisms (i.e., surface reactivity, ROS generation, affinity to terrestrial and aquatic organisms) are more specific and require specific SbD strategies. We do not exclude that in the future, specific mechanisms of release may be extracted from the general group in which we have grouped all resources relative to this mechanism.

Figure 4. Total number of resources (light blue) and usable (dark blue) resources grouped according to the mechanism of concern.

3.6 Usability Cards

For a rapid access to the selected SbD resources, we envisaged usability cards that provide all useful information about a method at glance (goal, physicochemical information, resource type, link to the full text). This information is organized according to the template below. Usability cards for all selected resources are available as annexes of this deliverable.

SAPANA	RPSbDxxx			Title	
Scope / abstract:					
NFs chemistry:	Mechanism	of concern:	Key p property j	physico-chemical for risk:	Safe by design strategy apply:
Main content:					
Recommendations for use:	(eg link to ot	her resources)		R	esource type
Source :				Owne	r of the resource

4. Annex

USABILITY CARDS FOR SELECTED RESOURCES

RNF/NEPSbD 1	filters in a n	onpolar m		iculate TiO2-based UV nscreen formulations – article coatings
Scope / abstract: Manufactured TiO2 N associated with these NFs strongly dep Controlling these parameters in the sum better understand their fate, transport, and in sunscreen oil phase of four nanopartic a function of the oil composition. All the primary layer of aluminum (hydro)ox hydrophobic character. The fourth UV-f phase was composed of emollient oi Octyldodecyl xyloside (ODX) and PEG the presence or absence of the emulsi speciation of the surface chemistry before	ends on their co screen formulati d toxicity at the p culate UV filters he UV filters had ide and a seco ilter was coated ls and an emu 30 dipolyhydrox fying agent. Th	oncentratio on is cruci product's en- having dif d a nano-T ndary exter with SiO2 lsifying ag cystearate (heir aggreg	n, aggregation sta al in order to opti nd-of-life. In the p fferent coating cha iO2 core. Three o ernal layer of dif only, giving a hyc gent containing t DHS). The NFs w ates size was eva	te, and surface chemistry. mize the NFs content and resent work, the dispersion macteristics was studied as f them were coated with a ferent polymers giving a lrophilic character. The oil wo surfactant molecules: were dispersed in the oil in
	of concern: aquatic and	2 1		Safe by design strategy apply: Coating
Main content: In this work, surfactants fundamental in stabilizing the nanopart between the stability of the mineral UV diffuse into the inner spheres of the nano that the external PDMS coating was stat permeable enough to allow the diffusion dispersion and to an enhancement of the necessary step to optimize the use of nanoparticulate UV filters in a sunscreeen are key levers in the approach of minimi coating Drawback: Toxicity of the better disper formulation can be tested, an estimation impact of the reduced amount on the environment of the reduced amount on the	iculate UV filte filter's external of particle. In this I ble and not sign n of the ODX su e UV absorband of nanomaterial formulation an zing the associat	rs dispersi coating and light, T-dir ificantly do urfactant the ce almost l s in sunso d better pro- ted risk.	ons. A compromised its capability to be n ENMs showed the egraded during the prough the surface oy a factor 2. This creen product. De edicting their envir	se needs to be considered et the surfactant molecules ne best performance, given e dispersion procedure but , leading to a finer ENMs s work brings light on the ecreasing the amount of conmental fate and toxicity
Recommendations for use: (eg link to ot	her resources)			esource type no-specificity
Source : 10.1016/j.colsurfa.2020.124792	2		Colloi	ds and Surface A

SALYNA RNF/NEPSbD 6					ortars	strial Formulation and Based on Safer n-TiO2
Scope / abstract: Titanium air quality. Their activity of handling photocatalytic a workplace can be different sepiolite. In this work, we TiO2/sepiolite obtained by	can be increased additives can be at if the material compare occup	l by dispersing e exposed to r l used is raw n pational expos	and bindin n-TiO2. Ho -TiO2 powe	g them on 1 wever, the ders or if th	natural releas ne nanc	sepiolite surface. Worker se of nanoparticles to the oparticles are supported on
NFs chemistry: TiO2		of concern: ygen species	~ 1		mical risk:	
Main content: In summa formulating and applying TiO2 Data showed that the compared to the raw n-Ti- natural silicate could co improves the mortars' pho	mortars flled wi e number of par O2. The dispers nstitute a safe-	ith n-TiO2/sepi ticles released sion and immol by-design app	iolite hybric was lower bilization o proach. Ove	l photocata when the n- f the TiO2 erall, the 1	lytic ac -TiO2/ nanopa n-TiO2	dditive compared to raw n sepiolite hybrid was addee articles on the surface of a
Recommendations for use	: (eg link to oth	er resources)				esource type no-specificity
Source : 10.1007/s41742-	020-00252-7			Internat	tional J	ournal of Environmental Research

RNF/NEPSbD 74		Safer-by		cides made of tr oparticle assem	i-thiol bridged silver blies
Scope / abstract: Silver n and medical devices. Their lasting biocides but AgNPs sensitive to various cher Altogether, widespread us environment. There is thus on AgNP assemblies bridg stable and less sensitive to bound <i>via</i> their thiol functi	activity is due s themselves a nical environ e of AgNPs l a crucial need ged together b chemical envir	e to their capaci re usually easily ments that trig leads to bacteri l for improvement by a tri-thiol bio	ty to release y released fr ggers their al resistanc ent. Herein, inspired lig	e bioavailable Ag rom the product. transformation, e and safety con a proof of concep gand is presented	(I) ions making them long- Besides, AgNPs are highly decreasing their activity. cerns for humans and the of for a novel biocide based. The final nanomaterial is
NFs chemistry: Ag	Mechanism Soluble con release		Key p property Dissolutio	hysico-chemical for risk: on rate	Safe by design strategy apply: Bridge
		AgND AgND	d (L ^m) AgNP assembly Biocide Cytotoxic		
Moreover, these architectu can be regarded as a nove sensitivity to the surroundir and the environment with r bound to surface Ag is like two hybridizations could n that favor stabilization of th	I promising sang medium ma espect to curre ly to be respondir to be respondir hirror ligand b he assembly as	afer-by-design l ake it a long-las ently employed t nsible for the pa binding on two c nd dissolution in	biocide. Its ting biocide echnologies rticular beh lifferent che	tunable and cont e with drastically s. The mixed sp ³ – avior of AgNPs i emisorption sites,	rolled ion release and low reduced hazard for humans sp hybridization of L ⁻ thiols nvolved in assemblies. The
Recommendations for use:	(eg link to oth	her resources)			esource type no-specificity
Source : 10.1039/c9nh0028	86c				

Nanoscale Horizons

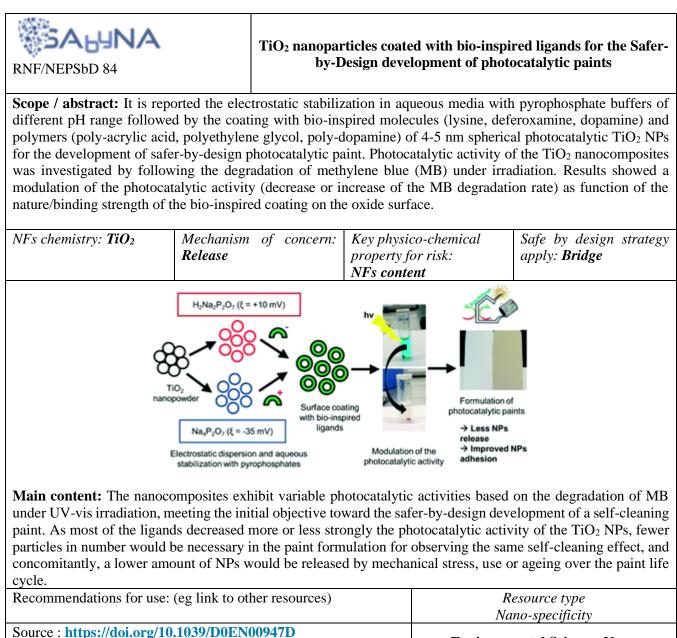
SALYNA RNF/NEPSbD 82	Form	ulation effects on the release of s from paint debris t	-
nanoparticles but differin pigment, were studied thr paint. The results indicate formulated with higher nanoparticles from paints lower release of Si amor leachates collected from matrix to hold the SiO ₂ E with TiO ₂ pigment did r containing SiO ₂ nanopart	ng in the pigment volum rough leaching test to invest e greater release of Si, a PVC value (63%), sug s. A paint sample with ng the paints with a lo this paint. This could b NPs in paint. The paint not show an important icles may release a limit	tions containing the same amount the concentration (PVC) and in an event vestigate the influence of these para about 1.7 wt.% of the SiO ₂ nanopara gesting that the PVC is a crucial the higher amount of binder and w PVC value (35%), and no SiC e due to the fact that a high portion sample in which the amount of call reduction on Si release. This work the amount of Si into the environment pommon pigments it is possible to	ameters on release of Si from articles in the paint, for pain l factor for release of SiO less calcite filler exhibited a 2 particles were detected in on of binder forms a suitable cite was partially substituted the suggests that paint debris ent, and that by adjusting the
		ern: Key physico-chemical	Safe by design strategy

paint. Silanized silica ENPs have an increased compatibility with acrylate binder, giving an increased incorporation of the silica particles in the polymer matrix. Regarding the solid paint debris obtained for the scope, it is well recognized that the smaller the residue size, the larger the surface area of the residue that is in contact with water, producing higher leachability of the substance from the solid material.

Recommendations for use: (eg link to other resources)	Resource type Nano-specificity
Source : 10.1016/j.scitotenv.2014.01.029	Science of the Total Environment

RNF/NEPSbD 62					sign approach for the based on silver nanowires
diameter (from 30 to 120 temperature control is demo were fabricated using these regard to the nanowire dime <i>vitro</i> toxicological studies c are weakly toxic. The globa	nm) and leng onstrated, and e standards a ensions. The tr arried out on al knowledge es and related	gth (from 5 to 1 used for the pre nd their optoele ransparent electr murine macroph dealing with th l toxicity should	120 μm) by paration of s ectronic pro rodes appear nages with the e combinati h encourage	concomitant ac size standards. P perties were me suitable for var he same size stan on of nanowire the rational use	bendent control of both the ddition of co-nucleants and ercolating random networks easured and compared with ious applications besides, <i>in</i> adards revealed that AgNWs dimensions associated with e of AgNWs, and guide the
NFs chemistry: Ag	Mechanism		Key physic	co-chemical	Safe by design strategy
	Fiber-like t	oxicity	property fo		apply: Aspect ratio
			Aspect rat		oxicity of different length to
encourage the rational use of	of AgNWs in Synthesis of AgNW	a "safer by desi	gn" approac	rDesign	
temperature setting, indepe demonstrated. Size standard	endent fine t ls were prepa be weakly to	uning of the di ared accordingly	iameter and v, and used f	length of AgN for the fabrication	lide ion concentrations and JWs has been successfully on of transparent electrodes. dependent toxicity, with the
Recommendations for use:	(eg link to otl	her resources)			Resource type ano-specificity
Source : 10.1039/c8en0089	Of			Environ	mental Science Nano

RNF/NEPSbD 30					ological Risk from Metal- ultiscale Safe-by-Design
Scope / abstract: Nano me	tal oxides ha	ve been propose	ed as alterna	atives to silver (A	g) nanoparticles (NPs) for
antibacterial coatings. Here		· ·			•
(ZnO) and copper oxide (Cu					
were subjected to the abrasi			_		•
the studied metal oxides NPs process. Lung and immune				•	
concentration (100 μ g/mL)					
abrasion of the textiles were					
which acute cytotoxicity wa					
metal oxide NPs in their app	plications for	the textile coati	ng and prov	vide insight for th	e safe-by-design approach.
NFs chemistry:	Mechanism	0		co-chemical	Safe by design strategy
Cu and Zn	Fiber-like t	oxicity	property f		apply: Coating and
	4 4 1'66	1	Surface cl		NFs/matrix affinity
Main content: The resourc and shape) and NFs exposu					
Zn and Cu rather than Ag or				d), application of	saler anti-bacteriar mi ⁺ or
	Meta	l Oxides			\land
Ethanol- a based sond synthesis o differently shaped NP	ochemical of sized and		9	Metal Oxlde coated textile	
		Toxicity	Abraded	particles	
Different induced comparable effects in	le toxic			Few NPs we released poly cotton fabric by the ethano process	/ester- s coated
The sonochemical technolo	gy provides	a new way to e	fficiently co	at textiles with N	IPs and the product safety
need to be assessed by hol					
properties, is shown to be the	he main facto	or in modulating	g the NP rel	lease. The ethano	l-based process led to less
release than the water-based					
study provides data for the					
product usage phases, with					rial textiles in the local and
global mitigation strategies	against the sj	pread of infectio	ous diseases		
Recommendations for use: ((eg link to ot	her resources)		R	esource type
					no-specificity
Source : 10.1021/acs.est.7b0	02390				Science and Technology



J. Nanopart. Res., 2015, 17, 149	Resource type
Environ. Sci.: Nano, 2017, 4, 1998 – 2009	Nano-specificity
Environ. Sci.: Nano, 2021, 8, 297 – 310	
Source : https://doi.org/10.1039/D0EN01232G	Environmental Science: Nano

SALUNA RNF/NEPSbD 75			oid Cytotoxicity Screening Zinc Oxide Nanoparticle th	
stress to compare the e nanoparticles in bronchia their volume of productio nanoparticles and Zn2+ pathway that includes leakage. Purposeful reduc matrix to slow Zn2+ relea	effects of titan l epithelial and n and likelihood release were c intracellular ca ction of ZnO c ase.	ium dioxide (7 l macrophage ce d of spread to the apable of ROS alcium flux, n ytotoxicity was	rameter cytotoxicity assay th FiO2), cerium oxide (CeO ell lines. The nanoparticles v e environment. Among the m generation and activation nitochondrial depolarization achieved by iron doping, v	2), and zinc oxide (ZnO) were chosen on the basis of haterials, dissolution of ZnO of an integrated cytotoxic h, and plasma membrane which changed the material
NFs chemistry: Zn	Mechanism Soluble release	of concern: compound	Key physico-chemical property for risk: Dissolution rate	Safe by design strategy apply: Doping
	mise their prote	e. In ZnO contai ection against su	The doped ZnO Fe doped ZnO Reduced dissolution Reduced Reduced Reduced	e, subtle changes in crystal
stabilization of material c structure may not compro	Toxicity So	e. In ZnO contained and the section against surface and the se	ining sunscreens, for instance inlight although it may affect the second	e, subtle changes in crystal

Environmental Science: Nano

SA	ιну	NA
	.02	

RNF/NEPSbD 85

Monitoring migration and transformation of nanomaterials in polymeric composites during accelerated aging

Scope / abstract: The work described here is focused on the evaluation of the migration and transformation of NM included in polymer nanocomposites (NC) during accelerated climatic ageing. To this aim, it was generated polyamide 6 (PA6) NC with different degree of compatibility between the NM and the polymeric matrix. These NC were submitted to accelerated aging conditions to simulate outdoor conditions (simulation of the use phase of the polymeric NC). The NC contain as nanofillers MWCNT and SiO2 NP with different surface properties to influence the compatibility with the polymeric matrix. The dispersion of SiO2 NP in the NC depended on their compatibility with the matrix. However, SiO2 NP were aggregated at the end of the accelerated aging process. Oppositely, compatibilized MWCNT (MWCNTMB) decreased the degradation of the polymer. Nevertheless, the nanomaterial migrated likewise to the surface during the ageing process. In order to evaluate the possible changes in the structure of nanomaterials due to the aging process, NM were extracted from the polymer by calcination. SiO2 hydrophilic nanoparticles were not affected by the aging process. However, both types of MWCNT were affected by the aging of the NC.

NFs chemistry:	Mechanism of concern:	Key physico-chemical	Safe by design strategy
MWCNT and SiO ₂	Release	property for risk:	apply:
		Aspect ratio - shape	Coating

Main content: Analysis of NC properties before and after ageing demonstrated that release of NM from polymer NC depends mainly on polymer degradation. The process of polymer degradation in NC materials under climatic conditions can be reduced by the inclusion of well-dispersed MWCNT. However, in the case of SiO2 NP degradation of the polymer is not dependent on the dispersibility of the nanofiller in the matrix. Therefore, the size, shape, and chemical composition of the nanofiller was shown to influence the release of NM to the environment.

Recommendations for use: (eg link to other resources)	<i>Resource type</i> <i>Nano-specificity</i>
Source : 10.1088/1742-6596/429/1/012044	Journal of Physics: Conference Series

RNF/NEPSbD 86	Exploring release and recovery of nanomaterial from commercial polymeric nanocomposites
containing nanomaterials and the fate of t as migration, release and physicochemi mechanical properties of commercial nan- with studies on the feasibility of recove model nanocomposites of Polyamide-6 (matrix filled with a 3% in mass of a set nanoparticles (SiO2, TiO2 and ZnO) to m nanocomposites were then treated und	done in order to understand degradation of polymeric nanocomposites these nanomaterials, which may occur in suffering many processes such cal modifications. Studies on the migration, release and alteration of nocomposites due to ageing and weathering have been performed along ry and recycling of the nanomaterials. The project includes the use as (PA), Polypropylene (PP) and Ethyl Vinyl Acetate (EVA) as polymeric t of selected broadly used nanomaterials; from inorganic metal oxides nulti-walled carbon nanotubes (MWCNT) and Nanoclays. These model her accelerated ageing conditions in climatic chamber. Additionally, olymeric matrix was addressed, being successfully achieved for PA and

NFs chemistry:	Mechanism of concern:	Key physico-chemical	Safe by design strategy
SiO ₂ , TiO ₂ and ZnO	Release	property for risk:	apply:
		NFs/NEP matrix affinity	Coating

Main content:

Regarding release of material due to accelerated aging, release of material has been found for all the tested composites, but exposure, and so potential risk, only would have to be addressed for the ones were nanomaterial rather than only polymer has been found. Good functionalization of nanomaterials surface to make them compatible with the polarity of the polymeric host is a key factor to determine the degree of degradation upon aging of the resulting composite. Regarding extraction and recovery methods, calcination of PP nanocomposites gave higher yields of recovery ($\approx 100\%$) than PA dissolution (40-60%), though the morphology and distribution of the organic core remains almost the same in both cases.

Recommendations for use: (eg link to other resources)	Resource type Nano-specificity
Source : 10.1088/1742-6596/429/1/012048	Journal of Physics: Conference Series

SALUNA RNF/NEPSbD 87	Excellent binding effect of L-methionine for immobilizing silver nanoparticles onto cotton fabrics to improve the antibacterial durability against washing						
Scope / abstract: To improve adhesion of the Ag NPs, various strategies have been tried, but achieving long- term antibacterial effectiveness still remains challenging. Here, L-methionine is proposed as a binder reagent because it has low toxicity towards mammalian cells and has a methyl group to enhance its coordination ability. The antibacterial cotton fabric was fabricated via a very simple pad-dry-cure process: after dipping a cotton fabric in an L-methionine solution followed with heating for esterification, Ag NPs are formed via the reaction of silver nitrate with sodium borohydride. The resulting cotton fabric exhibits an excellent antibacterial property and laundering durability. Its bacterial reduction rates (BR) against both S. aureus and E. coli remained over 97% even after 90 consecutive laundering cycles. Moreover, the modification causes insignificant damage to cotton's characteristics, such as tensile breaking strength, water absorptivity, and vapor permeability.							
NFs chemistry: MWCNT and SiO 2	Mechanism Release	of concern:	Key physic property fo Aspect rat		Safe by design strategy apply: Bridge		
Main content: L-Methionine can improve adhesive force of Ag NPs onto fiber surface of cotton. The binding effect of L-methionine gives cotton fabrics with a remarkable antibacterial durability that can keep the BR rate more than 97% even after 90 stringent laundering cycles. The high washing durability is contributable to the coordination bonds between Ag NPs and the L-methionine moieties that grafted on the cotton fiber surface.							
$\begin{array}{c} OH & OH & OH \\ \hline & I \\ Cot \end{array} \xrightarrow{L-methionine} \\ \hline & I80 \ ^{\circ}C \end{array} \xrightarrow{L-methionine} \\ \hline & I80 \ ^{\circ}C \end{array} \xrightarrow{MH_2} \xrightarrow{NH_2} \xrightarrow{AgNO_3} \\ \hline & Me-Cot \end{array} \xrightarrow{AgNO_4} \\ \hline & Ag-Me-Cot \end{array}$							
Importantly, the finishing method does not significantly damage cotton natures such as tensile breaking strength, water absorptivity, and vapor permeability. It is believed that the finishing method has great potential for practical applications in biomedical textiles.							
Recommendations for use	: (eg link to ot	her resources)			esource type no-specificity		
Source : 10.1039/c8ra044	01e				SC Advances		

SALUNA RNF/NEPSbD 88	Fate	Fate of nanoparticles during life cycle of polymer nanocomposites			
has been investigated. Enanoparticles were studie UV radiation between 295 much slower rate than the resulted in substantial acc	Epoxy polymer conta d. Specially-designed 5 nm and 400 nm. Epo e unfilled epoxy or the umulation of nanopar onment, but MWCNT	aining multi-walled cells containing nar oxy containing MWC he epoxy/nanosilica ticles on the compos Is formed a dense r	carbon nanotube nocomposite species CNTs exposed to composite. Photo ite surfaces. Silica	posure to UV environment es (MWCNTs) and silica imens were irradiated with UV radiation degraded at a odegradation of the matrix a nanoparticles were found omposite surface, with no	
NFs chemistry: MWCNT and SiO ₂	Mechanism of con Release	property f	hysico-chemical for risk: tio – shape	Safe by design strategy apply: Matrix composition	
composite was lower that MWCNTs decrease the p network on the nanocom	in that observed in up bootedegradation of posite surface, with posible for essentially	unfilled epoxy or ep the amine-cured epo no evidence of rele y eliminating the re Composite surfac Polymer/CN CNTS	poxy/nanosilica c oxy. MWCNTs f ease even after p elease of CNTs to	adation of MWCNT/epoxy omposite, suggesting that ormed a dense, entangled rolonged exposure to UV to the environment during	
	A CAR	w m m aggregated	creasingly accumulated, I, and form a dense, tted network on the surface		
Recommendations for use	e: (eg link to other rese	aggregated interconnec	l, and form a dense, ted network on the surface <i>R</i>	esource type no-specificity	

RNF/NEPSbD 89			dispersion of	sion of carbon nanotubes in polymer at high concentrations		
Scope / abstract: The polymer nanocomposite used in this work comprises elastomer poly(dimethylsiloxane) (PDMS) as a polymer matrix and multi-walled carbon nanotubes (MWCNTs) as a conductive nanofiller. To achieve uniform distribution of carbon nanotubes within the polymer, an optimized dispersion process was developed, featuring a strong organic solvent—chloroform, which dissolved PDMS base polymer easily and allowed high quality dispersion of MWCNTs. At concentrations as high as 9 wt.%, MWCNTs were dispersed uniformly through the polymer matrix, which presented a major improvement over prior techniques.						
NFs chemistry: CNT	Release property			n of NFs in the	Safe by design strategy apply: Composition and surface chemistry	
Main content: Based on its high solubility for PDMS and MWCNTs respectively, and its ability to retain dispersed state of MWCNTs in presence of PDMS, chloroform was found to be an optimal choice as a common solvent. Also, the surface functionalization of CNTs by carboxyl groups was found to be beneficial for further improvement of dispersion quality. A combinatory approach was developed in which mechanical stirring was used to facilitate the initial dissolution of PDMS inside common solvent, and mild sonication used to as a main tool to disperse MWCNTs within PDMS. Evaporation process was facilitated and expedited by use of vacuum pump and accurate control of elevated temperatures. Solution drying time was significantly shortened.						
Recommendations for use:	(eg link to of	her resources)			esource type no-specificity	
Source : 10.3390/nano2040	329			Nanomaterials		

SALUNA RNF/NEPSbD 90	-	Quantitative rates of release from weathered nanocomposites are determined across 5 orders of magnitude by the matrix, modulated by the embedded nanomaterial				
Scope / abstract: Major uses of nanomaterials are as functional fillers embedded in a solid matrix, such a plastics, tires, and coatings. Degradation of the solid matrix during the use phase can lead to a release of th nanomaterial and of fragments which might further degrade and release nanomaterials or smaller fragments is secondary processes. Here we focus on release induced by weathering, and specifically on quantitative rates of the mass of fragments released in the size range between 2 nm and 10 μm. The protocol specifies ISO489 conditions of UV aging, optionally with rain, then immersed sonication, then size-selective quantification. All of these are elements of the protocol that was developed and pre-validated in a pilot international interlation comparison by the NanoRelease initiative. We rescaled releases for UV dose and immersion volumes, and fin that the resulting release rates in units of mg release per MJ photons are determined across 5 orders of magnitud by the matrix (PE, PU, PA, POM, epoxy, cement)						
NFs chemistry: CNT	Mechanism of concern: Release		Key propert Chemic	physico-chemical y for risk: al composition	Safe by design strategy apply: matrix composition and surface chemistry	
Main content : The release rates in units of mg release per MJ photons rank primarily by the matrix (PE, PU, PA, POM, epoxy, cement). The key role of the matrix was previously obscured by the design of measurement campaigns that aimed at elucidating the nano-specific effects, by comparing different nanomaterials in the same matrix. We confirm that embedded metal-oxide, carbonaceous, or organic nanomaterials can modulate the release rate up or down, but the overwhelming factor is the matrix. Variations of the aging and sampling conditions or a restriction of quantification to the size range from 2 nm to 150 nm do not affect this conclusion. It is plausible to extrapolate this hierarchy: If the susceptibility of the matrix is more important than any property of the embedded nanomaterial, then the aging process should be yet more decisive $\frac{Weathering of nanocomposite}{SiO_2, Fe_2O_3, CNT, CB, in:}$						
Recommendations for use:	(eg link to ot	her resources)		esource type no-specificity	
Source : 10.1016/j.impact.2	2016.01.001				NanoImpact	

Safe(r) by design implementation in the nanotechnology industry

Scope / abstract: The implementation of Safe(r) by Design (SbD) in industrial innovations requires an integrated approach where the human, environmental and economic impact of the SbD measures is evaluated across and throughout the nanomaterial (NM) life cycle. SbD was implemented in six industrial companies where SbD measures were applied to NMs, nano-enabled products (NEPs) and NM/NEP manufacturing processes. The approach considers human and environmental risks, functionality of the NM/NEP and costs as early as possible in the innovation process, continuing throughout the innovation progresses. Based on the results of the evaluation, a decision has to be made on whether to continue, stop or re-design the NM/NEP/process or to carry out further tests/obtain further data in cases where the uncertainty of the human and environmental risks is too large. However, SbD can also be implemented at later stages when there is already a prototype product or process available, as demonstrated in some of the cases. The SbD measures implemented in some of the case studies did not result in a viable solution. For example the coating of silicon nanoparticles with amorphous carbon increased the conductivity, the stability and reduced the dustiness of the particles and therefore the risk of explosion and the exposure to workers. However the socioeconomic assessment for their use in lithium-ion batteries for cars, when compared to the use of graphite, showed that the increase in performance did not overcome the higher production costs. This work illustrates the complexities of selecting the most appropriate SbD measures and highlights that SbD cannot be solely based on a hazard and exposure assessment but must include other impacts that any SbD measures may have on sustainability including energy consumption and waste generation as well as all associated monetary costs.

NFs chemistry:	Mechanism of concern:	Key physico-chemical	Safe by design strategy
Graphene, CNF, SiO2,	Fibre like toxicity,	property for risk:	apply: Process, aspect
Ag nanowires, Ag NPs	Surface reactivity,	Length, diamter (size),	ratio, substitution, size
and Si NPs	Affinity to	chemical composition	and coating
	aquatic/terrestrial	and dustiness potential	
	organisms, soluble		
	compound release and		
	photocatalytic activity		

Main content: This study has showed the complexities and barriers of the practical implementation of the NanoReg2 SbD concept as well as the benefits of reducing risk uncertainties along the innovation process instead of doing it at the end. SbD, or similar concepts are implemented in other sectors. Whilst different contexts bring different challenges it is important to collate the shared experiences and knowledge to encourage and facilitate the application of the concept to all industrial sectors. Overall the nanotechnology companies that participated in this study found value on the application of SbD. Avanzare shifted to zero liquid waste and almost eliminated employee handling of graphene in powder form. Group Antolin reduced workers exposure and was able to select the most efficient method for the production of CNFs (the method used for GATam CNFs). HIQ-nano was able to compare the toxicity of both materials and think of new solutions. NanoGap reduced in 50% the silver waste. Nanomakers reduced the risk of explosion, workers exposure and was able to assess the financial viability of the SbD measures. The implementation of SbD in the nanotechnology sector requires expertise in material science, chemical engineering, toxicity, exposure and risk and considerable amounts of data. To streamline the implementation and make it affordable for companies data on physicochemical properties, hazard and exposure should be shared through robust and reliable databases. Training on how to use the databases and risk assessment tools should be provided. This would facilitate the SbD implementation and will further progress the development of sustainable NEPs.

Summary of the companies involved, NMs considered, their application, innovation stage and the SbD measures and results.

NM/Company	Market	SbD Pillar	Before SbD	SbD	SbD Result	Conclusions/Benefits
Country	Sector			Measure		
	Stage Gate					
Graphene	Electric	Safer process	No previous	SbD	Lower exposure	Significant
AVANZARE	coatings &	(minimal	prototype for	principles	as graphene is	improvement in
(Spain)	paints (Stage	waste,	comparison	applied: - wet	commercialized	product sustainability
	2 Concept)	upscale	_	synthesis in	in wet form.	compared to other
	_	production)		water -	Reduced	synthesis
				recycle of	handling of dry	
				waste into	graphene No	
				new batches	liquid waste &	
				Semi-	very low solid	
				automatic	waste	

				packing for dry product with LEV		
CNF GRUPO ANTOLIN (Spain)	Automotive (Stage 5 Market entry)	Safer NM (lower toxicity) Safer process (upscale production)	Exposure risk in production & surface treatment stages High hazard potential due to HARN. Impact driven by high energy resources in production. Emission of greenhouse gases	Three candidate CNFs with different degree of impurities & crystallinity (GAtam, GANF, GANFg) Automated pneumatic transport Improve production process	Workers exposure reduced. Toxicity comparable for the 3 NMs/= CNT Environmental Impact reduced due to reduced emissions.	GATam toxicity comparable to GANF. GAtam production more efficient than GANF. Significant energy savings. Healthier working environment
Fluorescent NMs HIQ-NANO (Italy)	Biosensors (Stage 3 Prototype)	Safer NM (lower toxicity)	QD doped SiO2 High ecotoxicity due to the presence of Cd	Substitution of QD for a dye doped SiO2	Lower toxicity. Slightly higher exposure Similar process for both NMs. Changes driven by composition (elimination of Cd).	Similar risk. Reduction in all environmental Impact categories: 5% (Ecotoxicity) to 75% (Ozone Depletion) lower impact per kg of material.
Ag nanowires NANOGAP (Spain)	Photovoltaic panels (Stage 5 Market entry)	Sustainable process	High Ag waste Impact driven by energy demand per Kg AgNF & generated waste Risk of exposure	Change synthesis parameters Automated filtration	Higher process efficiency: contribution to impact categories decrease up to 90%. Reduced exposure but high risk due to the HARN nature of the NM.	Significant improvement in process sustainability
Ag NPs nanoComposix (Czech Republic)	Antibacterial coatings (Stage 3 Prototype)	Safer product (minimum release during use)	Potential consumer exposure to Ag ions	Design solution that limits release of Ag + during use preserving functionality for longer. Selection of low exposure coating method Selection of purification method with low waste Carbon Coating	Low release of Ag + from trolley coating Low exposure: dip coating method High energy consumption	Safer product as release of Ag + during use is insignificant Sustainable product in terms of releases to the environment. Impact due to high electricity consumption & waste generation
Si based NMs NANOMAKERS (France)	Batteries for electric vehicles (Stage 3 Prototype)	Safer NM (lower flammability)	High dustiness High flammability Moderate toxicity	Increase particle size Si@40 nm, Si@C40nm & Si@C75nm	Reduced dustiness Reduced flammability Si@C40nm slightly more toxic Comparable environmental	Considerable lower risk of ATEX for coated NMs. Comparable impact for the three NMs. Higher impact compared to using graphite (without NMs) but better

45

	· ·	· · · · · · · · · · · · · · · · · · ·		0	•	performance A 10% increase in battery capacity did not compensate the extra cost. graphitization degrees of iterials; ATEX: Explosive
Recommendations for use: (eg link to other resources) Resource type - Article Nano-specificity						~ 1
Source : <u>https://d</u>	loi.org/10.101	6/j.impact.20	20.100267		Nano	oImpact

RNF/NEPSbD 24			tic produc		particles enhances oxygen species without ial in vitro
Scope / abstract: Titania 'safe-by-design' approach redox reactivity. DLS a microscopy and surface an paramagnetic resonance (1 (ROS). All the produced s dispersed nanotitania, sugg of nano TiO ₂ ROS reactivi levels of ROS generation dichlorodihydrofluorescei pristine and modified nan in toxicity originating fro direct correlation between toxicity, and it is possible <u>altering the cell redox equ</u> <i>NFs chemistry:</i> TiO ₂	n for managin nd zeta-pote ea measurem EPR) was use pray dried nar gesting that th ty. The modifi n in exogence n (DCFH) as otitania in ma m the genera the photocata to improve ilibrium.	ng potential to: ontial analyses eents demonstra ed to determine notitania lowers fication of nano bus measureme acrophages and ation of reactive alytic activity of the former, for	xicity of tit confirmed ted nanosca the exogen ed levels of process is an titania with ents, includ pendent pro- alveolar ep e oxygen sp nanotitania example ac	tania nanoparticle the surface mo ale dimensions of nous generation of ROS when comp n appropriate desi silica and with cri ing photoexcitate oduction of oxide othelial cells, for pecies. Our findin and its oxidative dding silica as a <i>co-chemical</i> <i>for risk:</i>	es by controlling surface odification, and electron the particles. Electron of reactive oxygen species pared to the corresponding gn strategy for the control trate resulted in increased ion for 60 minutes. The ative stress, generated by and no significant change ngs show that there is no e stress-mediated potential
Main content: The introd and decreases oxidative st are not clear. The $SiO_2 coacements, etc.$	ress. But furt	her confirmatio	ns of the da	ata are needed giv	ven that the mechanisms
	: (eg link to c	other resources)		Resource type	
Recommendations for use					
Recommendations for use				Nano-specificit	у

RNF/NEPSbD 39	Characterization of photocatalytic paints: A relationship between the photocatalytic properties-release of nanoparticle and volatile organic compounds					
Scope / abstract : In the present study, characterization of two paints for indoor and outdoor applications, one containing micro-sized titanium dioxide (TiO ₂) particles and the other based on nano-TiO ₂ , is undertaken in order to understand their environmental impact during the use phase. The photocatalytic efficiency of the paints is determined before and after climatic ageing. The degradation of the paints induced by their ageing is characterized in parallel. Powders, dispersions and paints applied on a substrate are investigated to characterize the state of the nanoparticles (NPs) as a function of their surrounding media. The abrasion of the photocatalytic materials indicates that the presence of TiO ₂ (NPs) enhances the organic matrix degradation of the paints due to a greater photocatalytic effect. The online and continuous measurements by PTR-ToF-MS indicate that the degradation of the organic matrix leads to release of organic compounds (formaldehyde, methanol, acetaldehyde and formic acid) into the air which suggests that monitoring only the removal of VOCs (in this case xylene) is not enough to make a proper evaluation of the organic matrix as much lower VOC emissions were measured in the case of the aged paint which exhibits a lower amount of organic components in the matrix. This study links the morphological observations, chemical determination, structural parameters and photocatalytic properties of the paints for future optimization of safer-by-design photocatalytic paints.						
NFs chemistry: TiO 2					Safe by design strategy apply: Modification of organic matrix	
Main content: The authors declare the possibility of formulating safer-by-design paints, in the future, i.e. less NPs and VOCs releasing paints with the same photocatalytic efficiency. Therefore, the SbD strategy was not applied but only proposed. The suggested SbD strategy, to apply in photocatalytic paint field, could lead to an improvement of safety in terms of exposure but not in term of toxicity.						
Recommendations for use: (eg link to other resources) Resource type Nano-specificity					21	
Source : doi.org/10.1039/C	C7EN00467B			Environm	ental Science: Nano	

RNF/NEPSbD 59		Safer-by-design hybrid nanostructures: an alternative to conventional titanium dioxide UV filters in skin care products				
design approach so that minimized without con nanostructures compose using a sol-gel process, hybrid nanostructures to these hybrid nanostruct	t the associated ex- promising their f d of titanium dioxi were present. Afte o filter UV rays can ures are proven to as an ideal alterna	posure and functioning ide (TiO ₂) n r grafting op n be higher stabilize Pic tive to the	hazard risks throu efficiency. In this anoparticles grafted ptimization, we sho than their conventi- ckering emulsions,	ighout the context, d onto cell w that the onal coun replacing	s should follow a safer-by- eir entire life cycle can be organic–inorganic hybric lulose nanocrystals (CNC) e overall efficiency of these aterparts. At the same time g surfactant in formulation ic filters and stabilizers in	
NFs chemistry: TiO 2	Mechanism of Reactive oxyg generation		Key physico-che property for risk Surface reactivi	•	Safe by design strategy apply: Support	
alternative to conventio	nal TiO ₂ UV filter	s, reducing	the amount of TiO	2 thus red	CNC (see Figure) is an ucing the potential toxicity entional UV filter and good	
alternative to conventio	nal TiO ₂ UV filter: nostructures show ility, but no toxico cellulose crystals	s, reducing ed improved ological test	the amount of TiO ₂ d UV absorbance th to evaluate inflam TiO ₂ <u>TiO₂</u> <u>Precursor</u> addition Hybrid nanost	2 thus red nan conve matory re	ucing the potential toxicity entional UV filter and good	
alternative to convention concerns. The hybrid na Pickering emulsion stat	nal TiO ₂ UV filter: nostructures show illity, but no toxico cellulose crystals O ₄ <i>rolysis</i> Cellul nanocry ise: (eg link to othe	s, reducing ed improved ological test	the amount of TiO ₂ d UV absorbance th to evaluate inflam TiO ₂ <u>TiO₂</u> <u>Precursor</u> addition Hybrid nanost	2 thus red nan conve matory re	ucing the potential toxicity entional UV filter and good sponses are reported.	

di	ioxide nanoparticles: the role of silanol
	toxide nanoparticles, the role of shanoi
con	tent on ROS generation, surface activity
	and cytotoxicity

Scope / abstract: Surface chemistry, more specifically the surface silanol content, has been identified as an important toxicity modulator for SiO_2 NPs. Here, quantitative relationships between the silanol content on SiO2 NPs, free radical generation and toxicity have been identified, with the purpose of synthesizing saferby-design fumed silica nanoparticles. The goal is to study the quantitative relationship between the silanol content on SiO2, free radical generation and toxicity.

NFs chemistry: SiO ₂	Mechanism of concern:	Key physico-chemical	Safe by design strategy
	Surface reactivity	property for risk:	apply: Surface
		Surface chemistry	chemistry

Main content: Increasing the silanol content on SiO_2 , a lower toxicity was found. The authors demonstrated that it is possible to produce much less toxic SiO_2 NPs by modulating the synthesis conditions influencing the silanol content. However, apart from silanol contents, other factor may also affect SiO_2 toxicity. The usability could be improved through the incorporation in products, in real case use.

Recommendations for use: (eg link to other resources)	<i>Resource type</i> <i>Nano-specificity</i>
Source : doi.org/10.1186/s12989-019-0325-1	Particle and Fibre Toxicology – Paper Open access

RNF/NEPSbD 12	Cytotoxicity of nanomaterials applicable in restoration and conservation
common oxide materials applicable in reanatase with rutile crystalline modification	e compared the toxic potential of representatives of three of the most estoration: TiO_2 (standard and purified P25, a mixture of prevailing ons), SiO_2 (bare A200, and R805, R9200 as coated forms of A200), ty assays, WST-1 and LDH, evaluating metabolic activity and cell

membrane integrity, respectively, we preliminary ranked the tested substances according to their cytotoxic potential, which may be used for their prioritization for further testing and applications. After 24h exposure, a dose-dependent decrease in cell viability was only detected in ZnO NPs and uncoated silica (A200). Hydrophobic coated silicas (R805 and R9200) and TiO₂ NPs (purified and unpurified P25) did not exhibit cytotoxic effects up to the highest tested concentration of 250 μ g/mL. Toxicological data related to the physico-chemical characteristics will be applicable in developing both more efficient and safer nano-based products for restoration and conservation.

NFs chemistry: SiO ₂	Mechanism of concern: Surface reactivity	Key physico-chemic property for risk: Surface chemistry	apply: Coating			
Main content: In this document the authors work on silica NPs, trying to reduce cytotoxicity of silica NMs. In fact, silanol groups on the surface of bare silica are involved in ROS generation and can cause cytoxicity. The results showed that hydrophobic coating, as -CH ₃ (CH ₂) ₇ and -CH ₃ , prevents cytoxicity of silica NPs, which may be related to decreased abundance of surface silanol group and reactivity. The main limitation can be associated to the final functional property and application.						
Recommendations for use	e: (eg link to other resources)) (Conference Paper (free)			
Source : ISBN 978-80-87	7294-89-5	Nanoo	con 2018 - Proceedings 10th			

International Conference on Nanomaterials - Research & Application

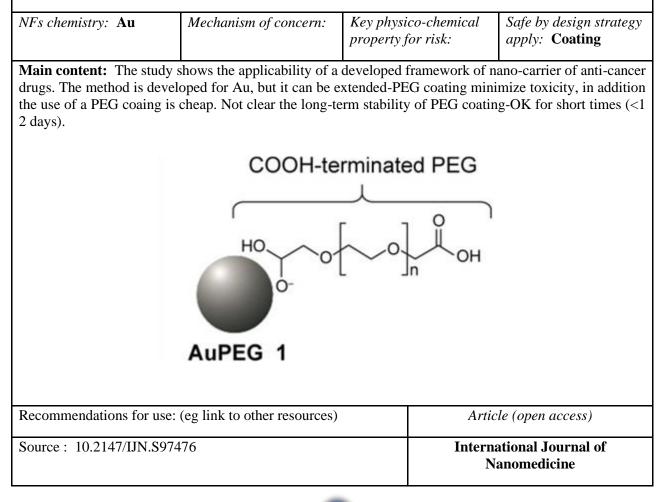
51
T

RNF/NEPSbD 22	Nano-engineering safer-by-design nanoparticle based moth- eye mimetic bactericidal and cyto-compatible polymer surfaces
in the fight against drug-resistant bact nanocomposite surfaces with a collabo action is reported. The moth-eye nanoc nanoparticle coating and surface nanoin based antibacterial materials whereby t improved. The broad antibacterial activ against Gram-positive Staphylococcus aeruginosa as model bacteria. The antib	vides a new design paradigm for alternative antibacterial strategies eria. In this paper, the enhanced bactericidal action of moth-eye prative nanoparticle functional and topography structural mode of composite surfaces are fabricated in combined processing steps of mprinting enabling the production of safer-by-design nanoparticle he nanoparticle load is minimized whilst bactericidal efficiency is vity of the nanocomposite moth-eye topographies is demonstrated aureus and Gram-negative Escherichia coli and Pseudomonas pacterial performance of the moth-eye nanocomposite topographies t moth-eye surfaces with bacteria inhibition efficiencies up to 90%.
5 1	osite topographies show a noncytotoxic behaviour allowing for the

NFs chemistry: TiO ₂	Mechanism of concern:	Key physico-chemical	Safe by design strategy	
and ZnO	Reactive oxygen	property for risk:	apply: NFs content	
	species generation	Surface reactivity		

Main content: The authors in this work described the nanoimprinting method to fabricate moth-eye mimetic antibacterial nanocomposite. The author described the remarkable bactericidal activity against Gram-positive and Gram-negative of nanocomposites with TiO2 and ZnO NPs, obtained reducing the amount of NPs by nanoimprinting, and underlined the good cytocompatibility of these nanoenabled products. Using PMMA as support the author reduced the NPs amount needed to have antibacterial activity and producing no cytotoxic products. Lack of information regarding the mechanical properties of this new products and real cases of application. More accurate test in other relevant media are required.

Recommendations for use: (eg link to other resources)	Article (no open access)
Source : 10.1039/c8ra03403f	RSC Advances



RNF/NEPSbD 23Hierarchical nano ZnO-micro TiO2 composites: High UV protection yield lowering photodegradation in sunscreens					
Scope / abstract: TiO_2 is a commonly used semiconductor photocatalyst but, as a paradox, it is also widely used as UV filter in sunscreens. Moreover, its capacity to form free radicals under UV irradiation generates reactive free radicals that provoke sunscreens degradation. In this work a hierarchical composite made of ZnO nanoparticles anchored onto TiO_2 microparticles is developed in a safe-by-design way by using the sol-gel method. The aim of this composite is to gain the advantages of inorganic nanoparticles avoiding their potential drawbacks. The hierarchical composite presents higher UV absorption than the pure TiO_2 or ZnO counterparts. The functional stability study on standard sunscreen reveals a 50% high Solar Protection Factor (SPF) values over time for the hierarchical composite lowering the photodegradation of the formulation. Under authors' knowledge, it is the first time that the combination of these oxides increases the UV attenuation as inhibits the negative effects of free radicals. The high UV absorption without degradation opens a new orientation for the effective use of UV-absorbers without the photocatalyst adverse effects. The results in sunscreens generate a proposed mechanism of functionality that explains the observed differences on the efficiency of photocatalytic activity of these materials for other application fields.					
<i>NFs chemistry:</i> TiO₂ and ZnO	Mechanism Reactive ox species gene	ygen	Key physi property f Surface r		Safe by design strategy apply: Support
Main content: In this document the authors developed a hierarchical composite made of ZnO nanoparticles anchored onto TiO ₂ microparticles. The composite presented higher UV adsorption and higher SPF value, and a reduced photocatalytic adverse effect. The results showed a reduction in free radicals' production, a higher SPF values and a more photostable UV filter with a reduced release of ZnO NPs. However, the strategy can be applicable only to photocatalytic NFs. Limited information about NPs release in relevant media, as sea water and synthetic sweat, that mimic the real exposure conditions.					
Sunscreen degradation H ⁺ ++OH Center radicals Sunscreen degradation Sunscreen Center radicals Sunscreen Center radicals					
Recommendations for use:	-			Article	(no open access)
Source : 10.1016/j.ceramint.2017.11.028 Ceramics International				ics International	

RNF/NEPSbD 44	Targeted polyethylene glycol gold nanoparticles for the
	treatment of pancreatic cancer: From synthesis to proof-of-
	concept in vitro studies

Scope / abstract: The main objective of this study was to optimize and characterize a drug delivery carrier for doxorubicin, intended to be intravenously administered, capable of improving the therapeutic index of the chemotherapeutic agent itself, and aimed at the treatment of pancreatic cancer. In light of this goal, we report a robust one-step method for the synthesis of dicarboxylic acid-terminated polyethylene glycol (PEG)-gold nanoparticles (AuNPs) and doxorubicin-loaded PEG-AuNPs, and their further antibody targeting (anti-Kv11.1 polyclonal antibody [pAb]). In in vitro proof-of-concept studies, we evaluated the influence of the nanocarrier and of the active targeting functionality on the anti-tumor efficacy of doxorubicin, with respect to its half-maximal effective concentration (EC50) and drug-triggered changes in the cell cycle. Our results demonstrated that the therapeutic efficacy of doxorubicin was positively influenced not only by the active targeting exploited through anti-Kv11.1-pAb but also by the drug coupling with a nanometer-sized delivery system, which indeed resulted in a 30-fold decrease of doxorubicin EC50, cell cycle blockage, and drug localization in the cell nuclei. The cell internalization pathway was strongly influenced by the active targeting of the Kv11.1 subunit of the human Ether-à-go-go related gene 1 (hERG1) channel aberrantly expressed on the membrane of pancreatic cancer cells. Targeted PEG-AuNPs were translocated into the lysosomes and were associated to an increased lysosomal function in PANC-1 cells. Additionally, doxorubicin release into an aqueous environment was almost negligible after 7 days, suggesting that drug release from PEG-AuNPs was triggered by enzymatic activity. Although preliminary, data gathered from this study have considerable potential in the application of safe-by-design nano-enabled drug-delivery systems (ie, nanomedicines) for the treatment of pancreatic cancer, a disease with a poor prognosis and one of the main current burdens of today's health care bill of industrialized countries.

54

Recommendations for use: Source : 10.1007/s11051-0	(eg link to other resources)			le (open access)	
Main content: In this study the authors improved water repellence and scratch resistance of paints containing silica NPs. Using this SbD method, the authors minimized the exposure to paint and paint's residuals. Safer paints formulations on nanoparticles helps to study the release during the paint life cycle. The paint matrix was modified using styrene-acrylic copolymer instead of acrylic copolymer. The pigments addition of TiO_2 was applied to improve matrix stability when exposed to UV light. The results shows that the SbD method limits the paint degradation and subsequent NPs release.					
	Affinity to aquatic and terrestrial organisms	property for risk:		apply: Matrix composition	
abrasion. In order to simulate outdoor aging during the life cycle of the product, painted panels were exposed to accelerated weathering experiments in accordance with the norm EN ISO 16474-3:2013. The surface modification of these paints was characterized by scanning electron microscope coupled with energy dispersive spectrometry (SEM-EDS). These analyses showed that the acrylic copolymer binder has undergone a more significant chemical degradation compared with the styrene-acrylic copolymer. To simulate a mechanical aging, abrasion tests were conducted using a Taber Abraser, simulating critical scenarios of the abrasion standard. The particle size distributions and particle concentrations of the abraded particles were measured using an electric low-pressure impactor. After accelerated aging and abrasion tests, we observed a link between the paint degradations occurring with the release of pristine NPs and the embedded pristine NPs. Surface degradation of acrylic copolymer paints was more significant than that of the styrene-acrylic copolymer paints, and this induced a release of NPs 2.7 times higher. Other parameters like TiO ₂ addition as pigments induced a strong stability of paint against light and water, decreasing the total number of NPs released from paints from 30,000 to 1200 particles/cm ³ . These results revealed that formulations can be tuned to decrease the number of free NPs released and get a "safe-by-design" product.					
Scope / abstract: The purpose of this study was to identify the parameters of the paint formulation containing SiO_2 NPs of 19-nm diameter that could have an impact on the release induced by aging and abrasion. In order to simulate outdoor aging during the life cycle of the product, painted panels were exposed					
		•	their life cycle	oparticles release during	

Engineering safer-by-design silica-coated ZnO nanorods with reduced DNA damage potential					
Scope / abstract: Zinc oxide (ZnO) nanoparticles absorb UV light efficiently while remaining transparent in the visible light spectrum rendering them attractive in cosmetics and polymer films. Their broad use, however, raises concerns regarding potential environmental health risks and it has been shown that ZnO nanoparticles can induce significant DNA damage and cytotoxicity. Even though research on ZnO nanoparticle synthesis has made great progress, efforts on developing safer ZnO nanoparticles that can maintain their inherent optoelectronic properties while exhibiting minimal toxicity are limited. Here, a safer- by-design concept was pursued by hermetically encapsulating ZnO nanorods in a biologically inert, nanothin amorphous SiO ₂ coating during their gas-phase synthesis. It is demonstrated that the SiO ₂ nanothin layer hermetically encapsulates the core ZnO nanorods without altering their optoelectronic properties. Furthermore, the effect of SiO ₂ on the toxicological profile of the core ZnO nanorods was assessed using the Nano-Cometchip assay by monitoring DNA damage (>3 times) for the SiO ₂ -coated ZnO nanorods compared to uncoated ones. Such an industry-relevant, scalable, safer-by-design formulation of nanostructured materials can liberate their employment in nano-enabled products and minimize risks to the environment and human health.					
NFs chemistry: ZnO	Mechanism of concern: Surface reactivity	Key physi property f Surface r		Safe by design strategy apply: Coating	
Main content: The method is well described and the reduction of toxicity, due to SiO ₂ -coated ZnO nanorods, is well documented. The process (flame spray pyrolisis) is already used for mass production of NF, therefore the process could be up-scaled.					
Recommendations for use: (eg link to other resources)			Article (no open access)		
Source : 10.1039/c3en00062a			Environmental Science: Nano		

